There are seven confirmed hepatitis C virus (HCV) genotypes, with whole-genome nucleotide sequences differing by Ͼ30%, and each can be further subdivided into related subtypes (67 confirmed), with nucleotide sequence divergence of between 15% and 30% (1).Genotype identification has long been used in clinical practice, because major genotypes have different response rates and require different doses and durations of pegylated interferon and ribavirin (PR) treatment. In contrast, until recently, subtype identification was mainly used in epidemiological studies. However, both in vitro studies and clinical trials with different classes of direct-acting antiviral (DAA) agents (NS3 protease, NS5A-, and nucleos[t]ide and nonnucleos[t]ide NS5B-polymerase inhibitors), given with PR or in interferon-free combinations, have shown lower response rates for HCV genotype 1a than for HCV genotype 1b (2-8). Moreover, at least for HCV genotype 1, both the frequency and the pattern of resistance to different DAA classes are subtype specific (9). A striking example is the NS3-Q80K polymorphism, naturally found in Ͼ30% of naive subtype 1a patients but in Ͻ1% of subtype 1b patients (10), which conveys 30%-to-40%-lower sustained-virologic-response (SVR) rates to the macrocyclic protease inhibitor simeprevir (2). Similarly, all subtype 1g sequences identified naturally carry a mutation conferring resistance to linear NS3 protease inhibitors (11).Subtype-specific differences in the genetic barrier to resistance appear to correlate to the RNA-dependent RNA polymerase mu-
HBsAg levels varied across genotypes in HBeAg-negative patients. HBsAg levels <3 logIU/mL were only useful for identifying genotype D inactive carriers. A single HBcrAg measurement ≤3 logU/mL plus HBV DNA ≤2000 IU/mL was highly accurate for identifying inactive carriers, regardless of their HBV genotype.
Genotype prevalence evolves and correlates to epidemiological factors. Continuous surveillance is necessary to better assess hepatitis C infection in Europe and to take appropriate actions.
AimTo evaluate HBV quasispecies (QA) complexity in the preCore/Core regions in relation to HBeAg status, and explore QA changes under natural evolution and nucleoside analogue (NUC) treatment.MethodsUltra-deep pyrosequencing of HBV preCore/Core regions in 30 sequential samples (baseline [diagnosis], treatment-free, and treatment-nonresponse) from 10 retrospectively selected patients grouped according to HBeAg status over time: HBeAg+ (N = 4), HBeAg- (N = 2), and fluctuating HBeAg (transient seroreversion/seroconversion pattern) (N = 4). QA complexity was defined by Shannon entropy, mutation frequency, nucleotide diversity, and mutation frequency of amino acids (MfAA) in preCore and Core.ResultsThe QA was less complex in HBeAg+ than in HBeAg- or fluctuating HBeAg. High complexity in preCore was associated with decreased viral replication (preCore MfAA negatively correlated with HBV-DNA, p = 0.005). QA complexity in the treatment-free period negatively correlated with values seen during treatment. Specific variants were mainly selected in the Core region in HBeAg- and fluctuating HBeAg patients, suggesting higher immune pressure than in HBeAg+.ConclusionsThe negative correlation between QA natural evolution and on-treatment evolution indicates the importance of pre-treatment QA study to predict QA changes in NUC nonresponders. Study of QA complexity could be useful for managing HBV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.