Aluminium alloys show poor formability at room temperature, and the production of complex components requires a series of high temperature forming processes, such as warm and hot forging, extrusion and hot sheet metal forming. Forming aluminium in these conditions subjects the tools to severe adhesive wear and galling, leading to increased energy needs, shorter tool life, lower part quality and increased cost. In this work, the wear mechanisms generated by aluminium alloys on forming tools have been studied by means of linear reciprocating sliding tests. Aluminium alloy AA2017 balls were slid against DIN 1.2344 (AISI H13) tool steel samples with various surface finishes at temperatures up to 450 ºC. The main results show that the observed wear mechanisms are extremely dependent on the system temperature, ranging from pure abrasive wear to formation of layers of compacted aluminium debris and gross aluminium transfer in the form of lumps. On the other hand, tool surface finish has a limited effect on gross material transfer, but does affect the material transfer micromechanisms.
Galling is a severe form of adhesive wear associated with both cold and hot metal forming operations. In hot sheet metal forming of Al-Si-coated ultrahigh-strength steel (UHSS), transfer occurs from the coated UHSS to the tool surface. This leads to poor quality of produced parts, damage of expensive tooling, and increased downtime for maintenance of the tools. This study thus aims at identifying the salient mechanism(s), which give rise to initiation/occurrence of galling at elevated temperatures. This has been accomplished by analysing actual hot forming tools and through systematic parametric tribological investigations in the laboratory. The analysis of the actual tools has shown that the transferred layer consists of Al, Si, and Fe. The structure of the transferred materials is composed of sintered/compacted wear particles. The parametric study has shown that galling is dependent on the operating conditions. A strong relationship between the contact pressure and material transfer has been observed. The severity of galling is lower for smoother surfaces at low contact pressure. However, at high contact pressure, the influence of roughness under these conditions is insignificant. It has also been observed that hard-tool steel substrates reduce the severity of galling, particularly, at high contact pressure.
In recent years, the usage of the hot stamping process has increased due to the high demands for production of ultra-high strength steels (UHSS). In particular, more studies are being carried out pertaining to the Al-Si coated UHSS to understand its behaviour during the forming process as well as the performance of the produced parts. The Al-Si coating is applied to the UHSS with the aim of reducing decarburisation and to avoid the formation of thick oxide scales on the workpiece during the heating stage. Usage of the Al-Si coating has the added benefit of greatly improving the corrosion resistance and paintability of the produced components [1, 2]. An important aspect of the Al-Si coated UHSS is the phase transformations in the coating that take place during heating. Al and the Si from the coating combine with the Fe from the steel substrate to form a range of intermetallic phases which have different physical and mechanical properties [1-3]. Furthermore, the Al-Si coating undergoes surface morphological changes as a result of melting of unalloyed aluminium during exposure to elevated temperatures. Some of the typical changes observed in the coating are illustrated in Figure 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.