Indonesia is an area prone to earthquakes. Earthquakes caused by the movement of the earth's plates are the biggest cause of earthquakes that will cause damage to the building structure. Earthquakes occurring in Indonesia often cost lives. However, it is certain that the cause of the loss of life is not directly caused by the earthquake, but caused by the destruction of the building that caused the collapse in the building.The purpose of writing the research is to determine the performance criteria of the university building's seismic performance from the performance point value using the ATC-40 code, showing the melamine scheme (plastic joint distribution) occurring from the calculation of the software program, knowing the collapse pattern of the building so it can be known the joints Suffered damage and suffered destruction of pushover analysis.From the results of the study, the structure of the building is able to provide nonlinear behavior indicated by the initial phase and the majority of plastic joints occur in new beam elements and then column elements. The performance level of the structure enters the criterion of operational which means that minor structural and building damage can be reused immediately.
Indonesia is one of the countries in the earthquake region. Therefore, it is necessary to build earthquake-resistant buildings to reduce the risk of material and life losses. Reinforced Concrete (RC) shear walls is one of effective structure element to resist earthquake forces. Applying RC shear wall can effectively reduce the displacement and story-drift of the structure. This research aims to study the effect of shear wall location in symmetric medium-rise building due to seismic loading. The symmetric medium rise-building is analyzed for earthquake force by considering two types of structural system. i.e. Frame system and Dual system. First model is open frame structural system and other three models are dual type structural system. The frame with shear walls at core and centrally placed at exterior frames showed significant reduction more than 80% lateral displacement at the top of structure.
Pada studi ini dilakukan analisis terhadap kinerja struktur bangunan baja bertingkat (5 dan 15 lantai) dengan 3 variasi tipe pengaku diagonal (Inverted V, Single Diagonal dan X-Bracing) dan gedung terbuka. Analisis dilakukang dengan bantuan software SAP 2000 v14. Hasil dari analisis ini akan dibandingkan dari 4 tipe gedung dan 2 jenis ketinggian. Melalui studi analisis ini dilakukan perbandingan perpindahan dan simpangan masing-masing gedung. Gedung dengan tambahan pengaku diagonal memiliki nilai perpindahan yang lebih kecil dibanding struktur gedung terbuka. Gedung dengan tipe pengaku diagonal X-Bracing mampu mereduksi perpindahan paling besar dengan presentase 30,78% untuk gedung 5 lantai dan 18,84% untuk gedung 15 lantai. Taraf kinerja struktur bangunan 5 lantai termasuk dalam Immediate Occupancy untuk semua variasi pengaku diagonal. Hal ini menunjukkan bahwa penggunaan tipe pengaku diagonal X-Bracing paling efektif dapat meningkatkan kekakuan, kekuatan dan stabilitas struktur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.