Modern semiconductor structures reach sizes in the nanometer regime. Optical metrology characterizes test structures for the quality assessment of semiconductor fabrication. The limits of radiation to resolve nanometer structure sizes can be overcome by shortening the wavelength. The compact source extreme ultraviolet (EUV) scatterometer presented here characterizes samples in the EUV spectral range using plasma radiation. Reference measurements with synchrotron radiation are carried out using a beamline scatterometer. A comparison including Markov chain Monte Carlo sampling shows that the compact source and beamline setups can both determine the given dimensional parameters of a nanoscale grating with uncertainties in the sub-nanometer range. Grating characterization based on soft x ray scattering has increased accuracy.
Any modeling of an interaction between photons and matter is based on the optical parameters. The determination of these parameters, also called optical constants or refractive indices, is an indispensable component for the development of new optical elements such as mirrors, gratings, or lithography photomasks. Especially in the extreme ultraviolet (EUV) spectral region, existing databases for the refractive indices of many materials and compositions are inadequate or are a mixture of experimentally measured and calculated values from atomic scattering factors. Synchrotron radiation is of course ideally suited to verify such material parameters due to the tuneability of photon energy. However, due to the large number of possible compounds and alloys, the development of EUV laboratory reflectometers is essential to keep pace with the development of materials science and allow for inline or on-site quality control. Additionally, optical constants are also essential for EUV metrology techniques that aim to achieve dimensional reconstruction of nanopatterned structures with sub-nm resolution. For this purpose, we studied a TaTeN grating created on an EUV Mo/Si multilayer mirror, to mimic a novel absorber EUV photomask. We present here a first reconstruction comparison of these structures, measured by EUV scatterometry at the electron storage ring BESSYII and with a laboratory setup of a spectrally-resolved EUV reflectometer developed at RWTH Aachen University. Both approaches differ in several aspects reaching from setup size to spectral quality (brilliance, bandwidth and coherence) as well as the measured and simulated data.
EUV scatterometry can retrieve geometrical information from nanoscale grating structures through elastic scattering of EUV radiation and the evaluation of the diffraction intensities. Its geometry and energy range place it in between grazing incidence x-ray scattering (GISAXS) and optical critical dimension (OCD). PTB recently commissioned a new scatterometry setup for the EUV and soft x-ray region that can address sample areas below 100 × 100 μm size by using a comparably steep, grazing angle of incidence of up to 30°. At the same time, the full cone of exit angles of 30° can be detected such that also the higher orders can be recorded in scatterometry measurements. It has been commissioned at PTB’s monochromatic soft x-ray beamline at the synchrotron radiation facility BESSY II and can also be used for simultaneous x-ray fluorescence detection. Its great tunability and energy resolution allows to scan across absorption edges of the relevant semiconductor materials to increase the contrast between different materials. The nanoscale geometry of modern transistor designs features different materials and structure sizes in the single digit nanometer range. Using the information wealth of spectrally resolved scatterometry measurements from the new setup, we present data and first geometrical reconstructions of selected, complex, industry-relevant design studies. The geometrical reconstruction of these structures relies on precise measurements, modelling of the scattering process, and statistical data evaluation methods.
The interaction of matter and light can be described based on optical constants, shortly called δ&β. These constants provide the fundamental basis for the design of any optical system. In the Extreme Ultraviolet (EUV) spectral range, however, the existing data for many materials or compounds is very sparse, non-existent or exhibit considerable discrepancies between different sources. This is further complicated since the scaling effects stipulate the optical response of a thin film to differ from bulk. Oxidation, impurities or interdiffusion significantly affect the optical response of a system to EUV radiation. For this reason, the Physikalisch-Technische Bundesanstalt (PTB) is establishing a new database in cooperation with other European partners. This database, designated as the Optical Constants Database (OCDB) can be accessed online freely (OCDB.ptb.de). This data collection shall support further development of various fields from new metrological techniques, like EUV scatterometry to computational lithography in the EUV. This is demonstrated exemplarily here by the interplay between δ&β and the dimensional parameters with respect to a structured TaTeN EUV photomask. It is equally important either direction, to derive structure parameters from the measured EUV scattering as vice versa to predict the EUV response from the geometrical structure. In addition, the impact of varying δ and β on the expected imaging performance will be investigated by simulating typical lithographic image metrics like Critical Dimension (CD), best focus position, image contrast (NILS) and non-telecentricity for the imaging of through pitch L/S and 16 nm vertical Lines with 32 nm pitch in a NA=0.55 scanner for TaTeN mask absorber as typical representatives of high-k absorber materialsand as an example of the effect on imaging simulation.
Smaller and more complex nanostructures in the semiconductor industry require a constant upgrade of accompanying metrological methods and equipment. A central task for nanometrology is the precise determination of structural features of gratings in the nanometer range as well as their elemental composition. Scatterometry and x-ray fluorescence in the soft x-ray and extreme ultraviolet spectral ranges are ideally suited to this task. We here present a new, compact measurement chamber that can simultaneously detect the elastically scattered signal and the fluorescence, originating from nanoscale grating samples. Its geometry enables detecting scattered intensity over a wide angular range with a variable angle of incidence. We show first experiments on industry-relevant test structures from the commissioning process alongside the specifications of the setup, located at PTB’s soft x-ray radiometry beamline at the synchrotron radiation facility BESSY II in Berlin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.