Cell growth and proliferation are tightly linked to nutrient availability. The mechanistic target of rapamycin complex 1 (mTORC1) integrates the presence of growth factors, energy levels, glucose and amino acids to modulate metabolic status and cellular responses1-3. mTORC1 is activated at the surface of lysosomes by the RAG GTPases and the Ragulator complex through a not fully understood mechanism monitoring amino acid availability in the lysosomal lumen and involving the vacuolar H+ -ATPase 4-8. Here we describe the uncharacterized human member 9 of the solute carrier family 38 (SLC38A9) as a lysosomal membrane-resident protein competent in amino acid transport. Extensive functional proteomic analysis established SLC38A9 as an integral part of the Ragulator/RAG GTPases machinery. Gain of SLC38A9 function rendered cells resistant to amino acid withdrawal, while loss of SLC38A9 expression impaired amino acid-induced mTORC1 activation. Thus SLC38A9 is a physical and functional component of the amino acid-sensing machinery that controls the activation of mTOR.
Detection of viral nucleic acids is central to antiviral immunity. Recently, DAI/ZBP1 (DNA-dependent activator of IRFs/Z-DNA binding protein 1) was identified as a cytoplasmic DNA sensor and shown to activate the interferon regulatory factor (IRF) and nuclear factor-kappa B (NF-jB) transcription factors, leading to type-I interferon production. DAI-induced IRF activation depends on TANK-binding kinase 1 (TBK1), whereas signalling pathways and molecular components involved in NF-jB activation remain elusive. Here, we report the identification of two receptorinteracting protein (RIP) homotypic interaction motifs (RHIMs) in the DAI protein sequence, and show that these domains relay DAI-induced NF-jB signals through the recruitment of the RHIMcontaining kinases RIP1 and RIP3. We show that knockdown of not only RIP1, but also RIP3 affects DAI-induced NF-jB activation. Importantly, RIP recruitment to DAI is inhibited by the RHIM-containing murine cytomegalovirus (MCMV) protein M45. These findings delineate the DAI signalling pathway to NF-jB and suggest a possible new immune modulation strategy of the MCMV.
ObjectivesEvidence suggests that B cell-depleting therapy with rituximab (RTX) affects humoral immune response after vaccination. It remains unclear whether RTX-treated patients can develop a humoral and T-cell-mediated immune response against SARS-CoV-2 after immunisation.MethodsPatients under RTX treatment (n=74) were vaccinated twice with either mRNA-1273 or BNT162b2. Antibodies were quantified using the Elecsys Anti-SARS-CoV-2 S immunoassay against the receptor-binding domain (RBD) of the spike protein and neutralisation tests. SARS-CoV-2-specific T-cell responses were quantified by IFN-γ enzyme-linked immunosorbent spot assays. Prepandemic healthy individuals (n=5), as well as healthy individuals (n=10) vaccinated with BNT162b2, served as controls.ResultsAll healthy controls developed antibodies against the SARS-CoV-2 RBD of the spike protein, but only 39% of the patients under RTX treatment seroconverted. Antibodies against SARS-CoV-2 RBD significantly correlated with neutralising antibodies (τ=0.74, p<0.001). Patients without detectable CD19+ peripheral B cells (n=36) did not develop specific antibodies, except for one patient. Circulating B cells correlated with the levels of antibodies (τ=0.4, p<0.001). However, even patients with a low number of B cells (<1%) mounted detectable SARS-CoV-2-specific antibody responses. SARS-CoV-2-specific T cells were detected in 58% of the patients, independent of a humoral immune response.ConclusionsThe data suggest that vaccination can induce SARS-CoV-2-specific antibodies in RTX-treated patients, once peripheral B cells at least partially repopulate. Moreover, SARS-CoV-2-specific T cells that evolved in more than half of the vaccinated patients may exert protective effects independent of humoral immune responses.
Through their capacity to sense danger signals and to generate active interleukin-1β (IL-1β), inflammasomes occupy a central role in the inflammatory response. In contrast to IL-1β, little is known about how IL-1α is regulated. We found that all inflammasome activators also induced the secretion of IL-1α, leading to the cosecretion of both IL-1 cytokines. Depending on the type of inflammasome activator, release of IL-1α was inflammasome dependent or independent. Calcium influx induced by the opening of cation channels was sufficient for the inflammasome-independent IL-1α secretion. In both cases, IL-1α was released primarily in a processed form, resulting from intracellular cleavage by calpain-like proteases. Inflammasome-caspase-1-dependent release of IL-1α and IL-1β was independent of caspase-1 catalytic activity, defining a mode of action for caspase-1. Because inflammasomes contribute to the pathology of numerous chronic inflammatory diseases such as gout and diabetes, IL-1α antagonists may be beneficial in the treatment of these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.