The peak capacity gain (Gn) of a GC×GC system is the ratio of the system peak capacity to that of an optimized one-dimensional GC analysis lasting the same time and providing the same detection limit. A near-theoretical maximum in Gn has been experimentally demonstrated in GC×GC-TOF based on a 60m×0.25mm primary column. It was found that Gn was close to 9 compared to the theoretical maximum of about 11 for this system. A six-sigma peak capacity of 4500 was obtained during an 80min heating ramp from 50°C to 320°C. Using peak deconvolution, 2242 individual peaks were determined in a Las Vegas runoff water sample. This is the first definitive experimental demonstration known to us of an order-of-magnitude Gn. The key factors enabling this gain were: relatively sharp (about 20ms at half height) reinjection pulses into the secondary column, relatively long (60m) primary column, the same diameters in primary and secondary columns, relatively low retention factor at the end of the secondary analysis (k≅5 instead of 15, optimal for ideal conditions), optimum flow rate in both columns, and helium (rather than hydrogen) used as the carrier gas. The latter, while making the analysis 65% longer than if using H2, was a better match to the reinjection bandwidth and cycle time.
Interest in the development and implementation of fast gas chromatography (GC) methods continues to increase. Fast GC method development and validation can be simplified and more successful if a few key theoretical and practical concepts are kept in mind. Key concepts such as speed-optimized flow rate, optimal temperature-program rate, sample capacity, "cut the column", and principles of method translation are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.