Objective of the paper is to substantiate rational ore-stoping technique while using small wells in the context of thin-vein steeply inclined deposit mining. The technique is based upon the repeated field studies and simulation of ore drawing processes for shrinkage ore stoping in terms of the oriented drilling of periphery holes. A design of a blast-hole charge with low-density porous intermediate layer has been proposed as a result as well as a mechanism of shock-wave propagation within rock mass in the process of thin steeply inclined vein stoping. Scientific novelty is represented by means of analytical results of scientific sources, and dependences of ore losses on the vein wall hypsometry resulting from shrinkage stoping in the context of the technique being proposed. Practical relevance is to substantiate rational parameters of the ore-stoping technique being proposed. The technique involves designs of blast-hole charges with low-density porous intermediate layer in stemming. Moreover, the technique proposes to place the intermediate low-density stemming layer right after a blast hole was charged with explosives and live primers were inserted.
The article deals with the actual issue of reducing the energy consumption of the mining enterprises conveyor transport system. The analysis of energy loss by conveyor belt during transportation of bulk load is given. A comparative analysis of energy losses in the cases of regulation and non-regulation of the speed of the conveyor belt is given. It was found that when regulating the speed of conveyor belt in the case of reducing the value of the load flow entering to the conveyor by half the loss of electricity for the transportation of load is reduced by 30 % compared to the unregulated speed of the belt. The energy efficiency criterion of the conveyor transport system is determined, which coincides with the specific energy capacity equal to the ratio of the average energy capacity of the transportation of load to the transport system average carrying capacity. It has also been established that for conveyor transport systems conveyor– bunker–conveyor, taking into account the downtime of conveyor equipment while regulating the speed of conveyor, energy losses are reduced by 23 %. The research results can be used to create a computer control system for the operation of conveyor transport systems.
Objective of the paper is to substantiate scientifically parameters and design of energy-efficient transportation and operational schedules for ore masses transfer by means of new-generation load-haul-dumpers (LHDs) adapted to real mining environment at different development stages. Features concerning formation of cargo traffics and components of mining as well as tunneling systems in the context of uranium deposits mining have been studied. Mathematical model to identify operational indices of load-haul-dumpers has been developed. Layout features of the spaced pin-connected frame construction have been used to develop mathematical models of disturbed motion. Potential sources to improve the efficiency of load-haul-dumpers in the context of mining intensification have been analyzed.
За результатами досліджень процесів видобування, підготовки та транспортування природного газу встановлено умови утворення газових кристалогідратів. Доведено, що кристалічні з'єднання компонентів природного газу з водою призводять до дуже небажаних технічних та технологічних наслідків. Для діагностики газопроводів рекомендовано впровадити програмно-технічний комплекс безпровідного контролю параметрів газозбірної системи.
The purpose of the paper is to analyze a deformation mechanism of the mine degassing pipelines to forecast their spatial changes in terms of intensification of underground mining of coal-gas seams. Methodology. The paper deals with expert assessment of the available approaches to diagnostics of technical condition of mine degassing pipelines, which are constructed within the in-seam underground mine workings with the floor rocks prone to heaving. The results of scheduled surveying measurements of technical condition of in-seam development workings have helped identify the potentially hazardous zones of rock mass deformation and indices of changes in spatial location of section degassing pipelines mounted in those mine workings. To determine the operating modes of a degassing pipeline under such operating conditions, a computer model of interaction of the elements of transport-technological system “mine gas pipeline – mine working” has been developed Findings. Diagnostics of technical conditions of the mine gas transmission lines and examination of their dismantled components have helped understand that deflections, mainly resulting in water accumulation zones, intensive corrosion of internal pipe walls, and mechanical depositions of coal and rock dust take place right within the flange connection areas. Formation of such zones is argued by health of the degassing pipeline as well as mine air inflow. Availability of internal corrosion, water accumulations, and mine air inflow decreases substantially capacity of the underground gas transmission line inclusive of qualitative characteristics of the captured methane-air mixture and efficiency of MDS on the whole. Originality. New approaches to diagnostics of technical condition of mine degassing gas pipeline in difficult mining and geological conditions of development of gas-bearing coal seams are substantiated and it is offered to consider indicators of their functioning as interacting in space and time transport-technological system "mine gas pipeline - mining". Practical implications. The operational parameters of mine degassing systems notes that the equipment performance with the least underpressure losses created by vacuum pipes requires that the degassing pipeline should have minimum hydraulic resistance of the gas transmission network. Pipeline aeration from the mine workings and water accumulations should be prevented by means of qualitative hermetic sealing of its flange connections as well as the pipeline straightness with the corresponding pitches. Consequently, the basic requirements for operating mine degassing pipelines involve their design profile, tightness of flange connections of pipes as well as operative control of the facility health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.