BackgroundThe increasing use of zebrafish model has not been accompanied by the evolution of proper anaesthesia for this species in research. The most used anaesthetic in fishes, MS222, may induce aversion, reduction of heart rate, and consequently high mortality, especially during long exposures. Therefore, we aim to explore new anaesthetic protocols to be used in zebrafish by studying the quality of anaesthesia and recovery induced by different concentrations of propofol alone and in combination with different concentrations of lidocaine.Material and MethodsIn experiment A, eighty-three AB zebrafish were randomly assigned to 7 different groups: control, 2.5 (2.5P), 5 (5P) or 7.5 μg/ml (7.5P) of propofol; and 2.5 μg/ml of propofol combined with 50, (P/50L), 100 (P/100L) or 150 μg/ml (P/150L) of lidocaine. Zebrafish were placed in an anaesthetic water bath and time to lose the equilibrium, reflex to touch, reflex to a tail pinch, and respiratory rate were measured. Time to gain equilibrium was also assessed in a clean tank. Five and 24 hours after anaesthesia recovery, zebrafish were evaluated concerning activity and reactivity. Afterwards, in a second phase of experiments (experiment B), the best protocol of the experiment A was compared with a new group of 8 fishes treated with 100 mg/L of MS222 (100M).ResultsIn experiment A, only different concentrations of propofol/lidocaine combination induced full anaesthesia in all animals. Thus only these groups were compared with a standard dose of MS222 in experiment B. Propofol/lidocaine induced a quicker loss of equilibrium, and loss of response to light and painful stimuli compared with MS222. However zebrafish treated with MS222 recovered quickly than the ones treated with propofol/lidocaine.ConclusionIn conclusion, propofol/lidocaine combination and MS222 have advantages in different situations. MS222 is ideal for minor procedures when a quick recovery is important, while propofol/lidocaine is best to induce a quick and complete anaesthesia.
foxm1 is a master regulator of the cell cycle, contributing to cell proliferation. Recent data have shown that this transcription factor also modulates gene networks associated with other cellular mechanisms, suggesting non-proliferative functions that remain largely unexplored. In this study, we used CRISPR/Cas9 to disrupt foxm1 in the zebrafish terminally differentiated fast-twitching muscle cells. foxm1 genomic disruption increased myofiber death and clearance. Interestingly, this contributed to non-autonomous satellite cell activation and proliferation. Moreover, we observed that Cas9 expression alone was strongly deleterious to muscle cells. Our report shows that foxm1 modulates a muscle non-autonomous response to myofiber death and highlights underreported toxicity to high expression of Cas9 in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.