Cardiac fibrosis is a common pathological change associated with cardiac injuries and diseases. Even though the accumulation of collagens and other extracellular matrix (ECM) proteins may have some protective effects in certain situations, prolonged fibrosis usually negatively affects cardiac function and often leads to deleterious consequences. While the development of cardiac fibrosis involves several cell types, the major source of ECM proteins is cardiac fibroblast. The high plasticity of cardiac fibroblasts enables them to quickly change their behaviors in response to injury and transition between several differentiation states. However, the study of cardiac fibroblasts in vivo was very difficult due to the lack of specific research tools. The development of cardiac fibroblast lineage-tracing mouse lines has greatly promoted cardiac fibrosis research. In this article, we review the recent cardiac fibroblast lineage-tracing studies exploring the origin of cardiac fibroblasts and their complicated roles in cardiac fibrosis, and briefly discuss the translational potential of basic cardiac fibroblast researches.
Lauric acid (LA), which is the primary fatty acid in coconut oil, was reported to have many metabolic benefits. TLR4 is a common receptor of lipopolysaccharides and involved mainly in inflammation responses. Here, we focused on the effects of LA on skeletal muscle fiber types and metabolism. We found that 200 μM LA treatment in C2C12 or dietary supplementation of 1% LA increased MHCIIb protein expression and the proportion of type IIb muscle fibers from 0.452 ± 0.0165 to 0.572 ± 0.0153, increasing the mRNA expression of genes involved in glycolysis, such as HK2 and LDH2 (from 1.00 ± 0.110 to 1.35 ± 0.0843 and from 1.00 ± 0.123 to 1.71 ± 0.302 in vivo, respectively), decreasing the catalytic activity of lactate dehydrogenase (LDH), and transforming lactic acid to pyruvic acid. Furthermore, LA activated TLR4 signaling, and TLR4 knockdown reversed the effect of LA on muscle fiber type and glycolysis. Thus, we inferred that LA promoted glycolytic fiber formation through TLR4 signaling.
After myocardial infarction, the massive death of cardiomyocytes leads to cardiac fibroblast proliferation and myofibroblast differentiation, which contributes to the extracellular matrix remodelling of the infarcted myocardium. We recently found that myofibroblasts further differentiate into matrifibrocytes, a newly identified cardiac fibroblast differentiation state. Cardiac fibroblasts of different states have distinct gene expression profiles closely related to their functions. However, the mechanism responsible for the gene expression changes during these activation and differentiation events is still not clear. In this study, the gene expression profiling and genome-wide accessible chromatin mapping of mouse cardiac fibroblasts isolated from the uninjured myocardium and the infarct at multiple time points corresponding to different differentiation states were performed by RNA sequencing (RNA-seq) and the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), respectively. ATAC-seq peaks were highly enriched in the promoter area and the distal area where the enhancers are located. A positive correlation was identified between the expression and promoter accessibility for many dynamically expressed genes, even though evidence showed that mechanisms independent of chromatin accessibility may also contribute to the gene expression changes in cardiac fibroblasts after MI. Moreover, motif enrichment analysis and gene regulatory network construction identified transcription factors that possibly contributed to the differential gene expression between cardiac fibroblasts of different states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.