The conversion of skeletal muscle fiber from fast twitch to slow‐twitch is important for sustained and tonic contractile events, maintenance of energy homeostasis, and the alleviation of fatigue. Skeletal muscle remodeling is effectively induced by endurance or aerobic exercise, which also generates several tricarboxylic acid (
TCA
) cycle intermediates, including succinate. However, whether succinate regulates muscle fiber‐type transitions remains unclear. Here, we found that dietary succinate supplementation increased endurance exercise ability, myosin heavy chain I expression, aerobic enzyme activity, oxygen consumption, and mitochondrial biogenesis in mouse skeletal muscle. By contrast, succinate decreased lactate dehydrogenase activity, lactate production, and myosin heavy chain
II
b expression. Further, by using pharmacological or genetic loss‐of‐function models generated by phospholipase Cβ antagonists,
SUNCR
1 global knockout, or
SUNCR
1 gastrocnemius‐specific knockdown, we found that the effects of succinate on skeletal muscle fiber‐type remodeling are mediated by
SUNCR
1 and its downstream calcium/
NFAT
signaling pathway. In summary, our results demonstrate succinate induces transition of skeletal muscle fiber via
SUNCR
1 signaling pathway. These findings suggest the potential beneficial use of succinate‐based compounds in both athletic and sedentary populations.
Lauric acid (LA), which is the primary fatty acid in coconut oil, was reported to have many metabolic benefits. TLR4 is a common receptor of lipopolysaccharides and involved mainly in inflammation responses. Here, we focused on the effects of LA on skeletal muscle fiber types and metabolism. We found that 200 μM LA treatment in C2C12 or dietary supplementation of 1% LA increased MHCIIb protein expression and the proportion of type IIb muscle fibers from 0.452 ± 0.0165 to 0.572 ± 0.0153, increasing the mRNA expression of genes involved in glycolysis, such as HK2 and LDH2 (from 1.00 ± 0.110 to 1.35 ± 0.0843 and from 1.00 ± 0.123 to 1.71 ± 0.302 in vivo, respectively), decreasing the catalytic activity of lactate dehydrogenase (LDH), and transforming lactic acid to pyruvic acid. Furthermore, LA activated TLR4 signaling, and TLR4 knockdown reversed the effect of LA on muscle fiber type and glycolysis. Thus, we inferred that LA promoted glycolytic fiber formation through TLR4 signaling.
Capsaicin is a major pungent content in green and red peppers which are widely used as spice, and capsaicin may activate different receptors. To determine whether capsaicin has different effects on different types of skeletal muscle, we applied different concentrations (0, 0.01, and 0.02%) of capsaicin in the normal diet and conducted a four-week experiment on Sprague-Dawley rats. The fiber type composition, glucose metabolism enzyme activity, and different signaling molecules' expressions of receptors were detected. Our results suggested that capsaicin reduced the body fat deposition, while promoting the slow muscle-related gene expression and increasing the enzyme activity in the gastrocnemius and soleus muscles. However, fatty acid metabolism was significantly increased only in the soleus muscle. The study of intracellular signaling suggested that the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid receptors in the soleus muscle were more sensitive to capsaicin. In conclusion, the distribution of TRPV1 and cannabinoid receptors differs in different types of muscle, and the different roles of capsaicin in different types of muscle may be related to the different degrees of activation of receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.