The detection of neuron-specific proteins in blood might allow quantification of the degree of neuropathology in experimental and clinical contexts. We have been studying a novel blood biomarker of axonal injury, the heavily phosphorylated axonal form of the high molecular weight neurofilament subunit NF-H (pNF-H). We hypothesized that this protein would be released from damaged and degenerating neurons following experimental traumatic brain injury (TBI) in amounts large enough to allow its detection in blood and that the levels detected would reflect the degree of injury severity. An enzyme-linked immunosorbent assay (ELISA) capture assay capable of detecting nanogram amounts of pNF-H was used to test blood of rats subjected to experimental TBI using a controlled cortical impact (CCI) device. Animals were subjected to a mild (1.0 mm), moderate (1.5 mm), or severe (2.0 mm) cortical contusion, and blood samples were taken at defined times post-injury. The assay detected the presence of pNF-H as early as 6 h post-injury; levels peaked at 24–48 h, and then slowly decreased to baseline over several days post-injury. No signal above baseline was detectable in control animals. Analysis of variance (ANOVA) showed a significant effect of lesion severity, and post hoc analysis revealed that animals given a moderate and severe contusion showed higher levels of blood pNF-H than controls. In addition, the peak levels of pNF-H detected at both 24 and 48 h post-injury correlated with the degree of injury as determined by volumetric analysis of spared cortical tissue. Relative amounts of pNF-H were also determined in different areas of the central nervous system (CNS) and were found to be highest in regions containing large-diameter axons, including spinal cord and brainstem, and lowest in the cerebral cortex and hippocampus. These findings suggest that the measurement of blood levels of pNF-H is a convenient method for assessing neuropathology following TBI.
Phenelzine (PZ) is a scavenger of the lipid peroxidation (LP)-derived reactive aldehyde 4-hydroxynonenal (4-HNE) due to its hydrazine functional group, which can covalently react with 4-HNE. In this study, we first examined the ability of PZ to prevent the respiratory depressant effects of 4-HNE on normal isolated brain cortical mitochondria. Second, in rats subjected to controlled cortical impact traumatic brain injury (CCI-TBI), we evaluated PZ (10 mg/kg subcutaneously at 15 minutes after CCI-TBI) to attenuate 3-hour post-TBI mitochondrial respiratory dysfunction, and in separate animals, to improve cortical tissue sparing at 14 days. While 4-HNE exposure inhibited mitochondrial complex I and II respiration in a concentration-dependent manner, pretreatment with equimolar concentrations of PZ antagonized these effects. Western blot analysis demonstrated a PZ decrease in 4-HNE in mitochondrial proteins. Mitochondria isolated from peri-contusional brain tissue of CCI-TBI rats treated with vehicle at 15 minutes after injury showed a 37% decrease in the respiratory control ratio (RCR) relative to noninjured mitochondria. In PZ-treated rats, RCR suppression was prevented (Po0.05 versus vehicle). In another cohort, PZ administration increased spared cortical tissue from 86% to 97% (Po0.03). These results suggest that PZ's neuroprotective effect is due to mitochondrial protection by scavenging of LP-derived 4-HNE.
Following traumatic brain injury, mitochondria sustain structural and functional impairment, which contributes to secondary damage that can continue for days after the initial injury. The present study investigated mitochondrial bioenergetic changes in the rat neocortex at 1 and 3 h after mild, moderate, and severe injuries. Brains from young adult Sprague-Dawley rats were harvested from the injured and contralateral cortex to assess possible changes in mitochondrial respiration abilities following a unilateral cortical contusion injury. Differential centrifugation was used to isolate synaptic and extrasynaptic mitochondria from cortical tissue. Bioenergetics was assessed using a Clark-type electrode and results were graphed as a function of injury severity and time postinjury. Respiration was significantly affected by all injury severity levels compared to uninjured tissue. Complex 1-and complex 2-driven respirations were affected proportionally to the severity of the injury, indicating that damage to mitochondria may occur on a gradient. Total oxygen utilization, respiratory control ratio, ATP production, and maximal respiration capabilities were all significantly decreased in the injured cortex at both 1 and 3 h post-trauma. Although mitochondria displayed bioenergetic deficits at 1 h following injury, damage was not exacerbated by 3 h. This study stresses the importance of early therapeutic intervention and suggests a window of approximately 1-3 h before greater dysfunction occurs.
SummaryThis study probed possible age-related changes in mitochondrial bioenergetics in naïve Fischer 344 rats. Synaptic and extrasynaptic mitochondria were isolated from the cortex of one hemisphere of young (3-5 mos), middle (12-14 mos), or aged (22-24 mos) rats. Respiration parameters were obtained using a Clarke-type electrode. Aged rats displayed no significant alterations in respiration, indicating mitochondria must be more resilient to the aging process than previously thought. Synaptic mitochondria displayed lower respiration capacities than the extrasynaptic fraction. Aged F344 rats appear capable of normal electron transport chain function without declines in ability to produce ATP. Markers of cortical oxidative damage (3-nitrotyrosine [3-NT], 4-hydroxynonenal [4-HNE], and protein carbonyls [PC]) were collected from the post mitochondrial supernatant (PMS) from the contralateral hemisphere, and from mitochondrial samples following respiration analysis. Agerelated increases in PC and 3-NT levels were found in synaptic mitochondria, whereas significant extrasynaptic elevations were only found in middle aged rats. These findings support an age-related increase in oxidative damage in the cortex, while proposing the two fractions of mitochondria are differentially affected by the aging process. Levels of oxidative damage that accumulates in the cortex with age does not appear to significantly impair cortical mitochondrial respiration of F344 rats.
Mitochondrial dysfunction is known to occur following traumatic brain injury (TBI) and has been well characterized. This study assessed possible age-related changes in the cortical mitochondrial bioenergetics following TBI. Three hours following a moderate TBI, tissue from the ipsilateral hemisphere (site of impact and penumbra) and the corresponding contralateral region were harvested from young (3-to 5-month-old) and aged (22-to 24-month-old) Fischer 344 rats. Synaptic and extrasynaptic mitochondria were isolated using a Ficoll gradient, and several bioenergetic parameters were examined using a Clark-type electrode. Injury-related respiration deficits were observed in both young and aged rats. Synaptic mitochondria showed an age-related decline in the rate of ATP production, and a decline in respiratory control ratios (RCR), which were not apparent in the extrasynaptic fraction. Following respiration analysis, mitochondrial samples were probed for oxidative damage (3-nitrotyrosine [3-NT], 4-hydroxynonenal [4-HNE], and protein carbonyls [PC]). All markers of oxidative damage were elevated with injury and age in the synaptic fraction, but only with injury in the extrasynaptic fraction. Synaptic mitochondria displayed the highest levels of oxidative damage and may contribute to the synaptic bioenergetic deficits seen following injury. Data indicate that cortical synaptic mitochondria appear to have an increased susceptibility to perturbation with age, suggesting that the increased mitochondrial dysfunction observed following injury may impede recovery in aged animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.