Traumatic brain injury (TBI) is documented to have detrimental effects on CNS metabolism, including alterations in glucose utilization and the depression of mitochondrial oxidative phosphorylation. Studies on mitochondrial metabolism have also provided evidence for reduced activity of the cytochrome oxidase complex of the electron transport chain (complex IV) after TBI and an immediate (lhr) reduction in mitochondrial state 3 respiratory rate, which can persist for up to 14 days postinjury. Using differential display methods to screen for differences in gene expression, we have found that cytochrome c oxidase II (COII), a mitochondrial encoded subunit of complex IV, is upregulated following TBI. Since COII carries a binding site for cytochrome c in the respiratory chain, and since it is required for the passage of chain electrons to molecular oxygen, driving the production of ATP, we hypothesized that metabolic dysfunction resulting from TBI alters COII gene expression directly, perhaps influencing the synaptic plasticity that occurs during postinjury recovery processes. To test this hypothesis, we documented COII mRNA expression and complex IV (cytochrome c oxidase) functional activity at 7 days postinjury, focusing on the long-term postinjury period most closely associated with synaptic reorganization. Both central fluid percussion TBI and combined TBI and bilateral entorhinal cortical lesion were examined. At 7 days survival, differential display, RT-PCR, and Northern blot analysis of hippocampal RNA from both TBI and combined insult models showed a significant induction of COII mRNA. This long-term elevation in COII gene expression was supported by increases in COII immunobinding. By contrast, cytochrome oxidase histochemical activity within tissue sections from injured brains suggested a reduction of complex IV activity within the TBI cases, but not within animals subjected to the combined insult. These differences in cytochrome c oxidase activity were supported by in vitro assay of complex IV using cerebral cortical and hippocampal tissues. Our present results support the hypothesis that COII is selectively vulnerable to TBI and that COII differences may indicate the degree of metabolic dysfunction induced by different pathologies. Taken together, such data will better define the role of metabolic function in long-term recovery after TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.