The role of arginine vasopressin (Avp) as an ACTH secretagogue is mediated by the Avp 1b receptor (Avpr1b) found on anterior pituitary corticotropes. Avp also potentiates the actions of CRH (Crh) and appears to be an important mediator of the hypothalamic-pituitary-adrenal axis response to chronic stress. To investigate the role of Avp in the hypothalamic-pituitary-adrenal axis response to stress, we measured plasma ACTH and corticosterone (CORT) levels in Avpr1b knockout (KO) mice and wild-type controls in response to two acute (restraint and insulin administration) and one form of chronic (daily restraint for 14 d) stress. No significant difference was found in the basal plasma levels of ACTH and CORT between the two genotypes. Acute restraint (30 min) increased plasma ACTH and CORT to a similar level in both the Avpr1b mutant and wild-type mice. In contrast, plasma ACTH and CORT levels induced by hypoglycemia were significantly decreased in the Avpr1b KO mice when compared with wild-type littermates. There was no difference in the ACTH response to acute and chronic restraint in wild-type mice. In the Avpr1b KO group subjected to 14 sessions of daily restraint, plasma ACTH was decreased when compared with wild-type mice. On the other hand, the CORT elevations induced by restraint did not adapt in the Avpr1b KO or wild-type mice. The data suggest that the Avpr1b is required for the normal pituitary and adrenal response to some acute stressful stimuli and is necessary only for a normal ACTH response during chronic stress.
Abstract-Renal denervation has shown promise in the treatment of resistant hypertension, although the mechanisms underlying the blood pressure (BP) reduction remain unclear. In a translational study of spontaneously hypertensive rats (n=7, surgical denervation) and resistant hypertensive human patients (n=8; 5 men, 33-71 years), we examined the relationship among changes in BP, sympathetic nerve activity, and cardiac and sympathetic baroreflex function after renal denervation. In humans, mean systolic BP (SBP; sphygmomanometry) and muscle sympathetic nerve activity (microneurography) were unchanged at 1 and 6 months after renal denervation (P<0.05). Interestingly, 4 of 8 patients showed a 10% decrease in SBP at 6 months, but sympathetic activity did not necessarily change in parallel with SBP. In contrast, all rats showed significant and immediate decreases in telemetric SBP and lumbar sympathetic activity (P<0.05), 7 days after denervation. Despite no change in SBP, human cardiac and sympathetic baroreflex function (sequence and threshold techniques) showed improvements at 1 and 6 months after denervation, particularly through increased sympathetic baroreflex sensitivity to falling BP. This was mirrored in spontaneously hypertensive rats; cardiac and sympathetic baroreflex sensitivity (spontaneous sequence and the Oxford technique) improved 7 days after denervation. The more consistent results in rats may be because of a more complete (>90% reduction in renal norepinephrine content) denervation. We conclude that (1) renal denervation improves BP in some patients, but sympathetic activity does not always change in parallel, and (2) baroreflex sensitivity is consistently improved in animals and humans, even when SBP has not decreased. Determining procedural success will be crucial in advancing this treatment modality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.