Gallic acid and its derivatives have a large number of applications in various fields of science. In nature, these compounds are widely distributed in plants and fruits, and thus they are being used as food stuffs, preservatives, etc. directly or indirectly by human community. They have also been implicated as anticarcinogenic, antimicrobial, antimutagenic, antiangiogenic and anti-inflammatory agents besides their use in treating critical diseases like depression, cancer, microbial infections, lipid-related diseases, etc. Herein, an attempt has been made to summarize the important uses of gallic acid derivatives which have extensively been disclosed particularly in various patents. This review would certainly create a great interest of the scientific community toward the developments and uses of gallic acid based compounds in the future.
Gallic acid and its derivatives not only exhibit excellent antioxidant, anticarcinogenic, antimutagenic, antimicrobial properties but also provide protection to the cells against oxidative stress. Gallic acid (3, 4, 5-trihydroxybenzoic acid), a low molecular triphenolic compound emerged as an efficient apoptosis inducing agent. The antimicrobial and other biological properties of gallic acid and its derivatives seemed to be linked with the hydrolysis of ester linkage between gallic acid and polyols like tannins hydrolyzed after ripening of many edible fruits. Gallic acid serves a natural defense mechanism against microbial infections and modulation of immune responses. The current review updates us with the diverse roles played by gallic acid, its antioxidant potential, action mechanism and more importantly the diverse array of applications in therapeutic and pharmaceutical areas.
Mutations in gyrA are the primary cause of quinolone resistance encountered in gram-negative clinical isolates. The prospect of this work was to analyze the role of gyrA mutations in eliciting high quinolone resistance in uropathogenic E.coli (UPEC) through molecular docking studies. Quinolone susceptibility testing of 18 E.coli strains isolated from UTI patients revealed unusually high resistance level to all the quinolones used; especially norfloxacin and ciprofloxacin. The QRDR of gyrA was amplified and sequenced. Mutations identified in gyrA of E.coli included Ser83Leu, Asp87Asn and Ala93Gly/Glu. Contrasting previous reports, we found Ser83Leu substitution in sensitive strains. Strains with S83L, D87N and A93E (A15 and A26) demonstrated norfloxacin MICs ≥1024mg/L which could be proof that Asp87Asn is necessary for resistance phenotype. Resistance to levofloxacin was comparatively lower in all the isolates. Docking of 4 quinolones (ciprofloxacin, ofloxacin, levofloxacin and norfloxacin) to normal and mutated E.coli gyrase A protein demonstrated lower binding energies for the latter, with significant displacement of norfloxacin in the mutated GyrA complex and least displacement in case of levofloxacin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.