An antagonist of human monocyte chemoattractant protein (MCP)-1, which consists of MCP-1(9-76), had previously been characterized and shown to inhibit MCP-1 activity in vitro. To test the hypothesis that, by inhibiting endogenous MCP-1, the antagonist has antiinflammatory activity in vivo, we examined its effect in the MRL-lpr mouse model of arthritis. This strain spontaneously develops a chronic inflammatory arthritis that is similar to human rheumatoid arthritis. Daily injection of the antagonist, MCP-1(9-76), prevented the onset of arthritis as monitored by measuring joint swelling and by histopathological evaluation of the joints. In contrast, controls treated with native MCP-1 had enhanced arthritis symptoms, indicating that the inhibitory effect is specific to the antagonist. In experiments where the antagonist was given only after the disease had already developed, there was a marked reduction in symptoms and histopathology, although individuals varied in the magnitude of the response. The mechanism of inhibition of disease is not known, although the results suggest that it could be more complex than the competitive inhibition of ligand binding that is observed in vitro. The demonstration of the beneficial effects of an MCP-1 antagonist in arthritis suggests that chemokine receptor antagonists could have therapeutic application in inflammatory diseases.
Since engaging T cell receptors in the absence of costimulation results in suboptimal activation of T cells and ultimately anergy, it appears that the immunomodulatory effects of low-dose PDT associated with extended engraftment may depend upon decreased LC expression of major histocompatibility complex and costimulatory molecules.
Stearoyl-CoA desaturase-1 (SCD1) catalyzes de novo synthesis of monounsaturated fatty acids from saturated fatty acids. Studies have demonstrated that rodents lacking a functional SCD1 gene have an improved metabolic profile, including reduced weight gain, lower triglycerides, and improved insulin response. In this study, we discovered a series of piperazinylpyridazine-based highly potent, selective, and orally bioavailable compounds. Particularly, compound 49 (XEN103) was highly active in vitro (mSCD1 IC(50) = 14 nM and HepG2 IC(50) = 12 nM) and efficacious in vivo (ED(50) = 0.8 mg/kg). It also demonstrated striking reduction of weight gain in a rodent model. Our findings with small-molecule SCD1 inhibitors confirm the importance of this target in metabolic regulation, describe novel models for assessing SCD1 inhibitors for efficacy and tolerability and demonstrate an opportunity to develop a novel therapy for metabolic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.