Self-assembled InAs quantum-dot lasers grown by molecular-beam epitaxy using an AlGaAsSb metamorphic buffer layer on a GaAs substrate are reported. The resulting quantum-dot ensemble has a density >3×1010/cm2 and a ground-state transition ranging from 1.46 to 1.63 μm. Pulsed, room-temperature operation generates lasing from the first excited state transition at wavelengths ranging from 1.27 to 1.34 μm. The minimum threshold current density (304 A/cm2) is achieved for a 7.7 mm cavity with cleaved, uncoated facets.
Room-temperature emission is observed as long as 3.26 μm in optically pumped type-I quantum well lasers on relaxed epitaxial layers grown by molecular-beam epitaxy. A superlattice is used to filter dislocations in the metamorphic buffer to reduce Shockley–Read–Hall losses. The longest wavelength emission of 3.45 μm from these structures is observed at 170 K, and the brightest room-temperature laser emits 0.5 W/facet peak power at 2.81 μm. It has a low threshold power density of 169 W/cm2 and a differential quantum efficiency of 28%. The characteristic temperatures, T0 and T1, are 119 K and 171 K, respectively. Stimulated emission is observed in this sample at a maximum operating temperature of 370 K.
As one of the few Type I band offset, antimony-based material systems available for 3.3 to 4.2 micron mid-infrared multiple quantum well lasers, AlInAsSb alloys have been used as barriers with InAsSb wells. Previously, AlxIn(1-x)AsySb(1-y) quaternary alloys have been grown by MBE as random alloys up to an aluminum fraction, x = 0.10 on GaSb substrates and x = 0.15 on InAs substrates. Random alloy growth of quaternary films with increased aluminum content, although beneficial to the devices, is limited by a miscibility gap. We have used a digital alloy technique to grow stable, single phase, GaSb lattice-matched, optically smooth quaternary alloys for aluminum fractions of 0.05 to 0.5, well into the miscibility gap. DCXRD results show FWHM of 0th order alloy peaks are within 1.5 to 2 times that of the highly crystalline GaSb substrates and have well defined thickness fringes corresponding to the total film thickness and the digital alloy period. TEM images show very well ordered alloys with characteristic ultrathin superlattice structure having smooth interfaces, very little strain and atomic ordering limited to that imposed by the digital alloy technique. Photoluminescence measurements are used to fit a model for bandgap prediction from known alloy compositions. Theoretical studies have predicted that the addition of a fifth element, gallium, may help suppress Auger recombination through its effects on the subband structure. So, gallium is added to the quaternary to produce a quinternary alloy lattice-matched to GaSb. These AlGaInAsSb alloys have DCXRD and TEM results similar to the quaternary. The stable, single-phase growth of these quinternary alloys across the composition range is promising for improving the operating characteristics of mid-IR lasers.
The degradation of AlGaAs/GaAs diode laser performance during operation is typically due to catastrophic optical damage of the facets caused when thermal runaway occurs. These heating effects are due to the presence of non-radiative recombination sites at and near the facets. MOCVD GaS is deposited on the facets of 825-nm ridge waveguide AlGaAs/GaAs quantumwell laser diodes as an electronic passivation to reduce the number of surface states available for non-radiative recombination. For passivated devices, a peak pulsed power nearly double that of unpassivated devices was achieved. The passivated devices also exhibit a longer lifetime before degradation. The impact of the passivation process on other optical characteristics of the laser diodes will also be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.