In recent decades, the world has witnessed an array of harmful invasions by exotic marine organisms. To provide the public and policymakers with better information on the status of exotic species in southern California waters, and to assess differences between port and non-port areas, a Rapid Assessment Survey of selected habitat types in sheltered waters between San Diego and Oxnard was conducted in the summer of 2000. The objectives included comparing the prevalence of exotic species among habitats and regions and between recent and past surveys; obtaining reference data for future assessments of changes in invasion status and the effectiveness of prevention or control efforts; detecting new invasions; and documenting significant range extensions. Twenty-two sites were sampled to include the three major commercial port areas in southern California, non-port-area marinas and lagoon sites. Sampling included dock fouling and adjacent soft-bottom benthos, nearby intertidal sites, and selected subtidal lagoon habitats. Samples were collected by a variety of manual techniques. Sixty-nine of the species collected are exotic, including representatives from two algal divisions and six invertebrate phyla. Ascidians are especially well-represented (14 exotic species) and widely occurring, and some bivalves and bryozoans also occur very widely. The numbers and proportions of exotic taxa were not significantly greater in port areas than in non-port areas.
Although the conspicuous epifauna of reducing environments are known to exhibit strong morphological, physiological, and nutritional adaptations for life in these habitats, it is less clear whether infaunal organisms do so as well. We examined metazoan macrofauna from methane-seep sediments on the northern California slope (500 to 525 m depth) and from seep and non-seep sediments at 3 locations on the shelf (31 to 53 m depth) to determine whether the community structure and nutritional sources of seep infauna were distinct from those in non-seep, margin sediments. Seep macrofauna consisted mainly of normal slope and shelf species found in productive settings. Several macrofaunal taxa, such as Capitella sp., Diastylopsis dawsoni, and Synidotea angulata, exhibited a preference for seeps. Other taxa, such as the amphipods Rhepoxynius abronius and R. daboius, avoided seeps. Species richness of shelf macrofauna, evaluated by rarefaction and diversity indices (H ' and J '), generally did not differ in seep and non-seep sediments. Similarly, stable isotopic composition (δ 13 C, δ 15 N) of active seep and non-seep macrofauna did not differ at the 3 shelf sites. Stable isotopic analyses of calcareous material confirmed the presence of methane-influenced pore waters at the slope study site. At one slope clam bed, macrofaunal δ 13 C signatures were lower and δ 15 N values were higher than at another clam bed, inactive slope sediments and shelf sites. However, only 1 of 14 macrofaunal taxa (a dorvilleid polychaete) exhibited isotopic evidence of chemosynthetic nutritional sources. At these sites, seep influence on the ecology of continental margin infauna appears spatially limited and relatively subtle. At their current level of activity, the northern California slope and shelf seeps appear to function as ephemeral, smallscale disturbances that are not sufficiently persistent to allow chemosynthesis-based trophic specialization by most infauna. Rather, we suggest that many of the infauna inhabiting these seep sediments are shelf and slope species preadapted to organic-rich, reducing environments.
The macroinfauna at depths 30–115 m was sampled in March–April 1989, c. two months after an oil spill that resulted from the grounding of the Bahia Paraiso. Stations consisted of the oil-spill site and a comparable control location, and two historical sites previously sampled in 1971. The historical sites were located at two distinct points along a known continuum of increasing physical stability with depth, attributed to disturbances from glacial calving. Macroinfaunal assemblages at most stations were characterized by very high densities and numbers of taxa. There were no significant differences (P<0.05) between the oil-spill and control sites in numbers of individuals, species, or families; nor were there any major differences in dominant fauna or overall community composition. The absence of a detectable impact on the fauna is consistent with results of hydrocarbon analyses, which showed that subtidal sediments were nearly devoid of contamination emanating from the Bahia Paraiso. The assemblage at the shallower of the two historical sites, however, showed a substantial change over the 18-yr period between studies. This change consisted of a shift toward a more species-rich and abundant macroinfauna characteristic of the more physically stable parts of the harbour. This change may be related to the fact that the glacier face near this site has retreated c. 250 m over the last 20 yrs, resulting in less physical disturbance of the adjacent seafloor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.