Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors.
Solar desalination is a zero-pollution, low-energy, off-grid water purification technology. However, the salt residue after water evaporation seriously threatens the continuous use of the solar thermal system. While the salt...
Compared with co-polarized (HH/VV) normalized radar cross-section (NRCS) backscattered from the sea surface, there is no saturation phenomenon in cross-polarized (HV/VH) NRCS when wind speed is greater than about 20 m/s, so cross-polarized synthetic aperture radar (SAR) images can be used for high wind speed monitoring. In this work, a new geophysical model function (GMF) is proposed to describe the relation of the C-band cross-polarized NRCS with wind speed and radar incidence angle. Here, sixteen ScanSAR wide mode SAR images acquired by RADARSAT-2 (RS-2) under tropical cyclone (TC) conditions and the matching wind speed data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Stepped-Frequency Microwave Radiometer (SFMR) are collected and divided into datasets A and B. Dataset A is used for analyzing the effects of the wind field and radar incidence angle on the reference noise-removed cross-polarized NRCS, and for proposing the new GMF for each sub-swath of the SAR images, while dataset B is used to retrieve wind speed and evaluate the validity of the new GMF. The comparisons between the wind speeds retrieved by the new GMF and the collocated ECMWF and SFMR data demonstrate the excellent performance of the new GMF for wind speed retrieval. To analyze the universality of the new GMF, wind speed retrievals based on 32 Sentinel-1A/B (S-1A/B) extra-wide-swath (EW) mode images acquired under TC conditions are also compared with the collocated wind speeds measured by the Soil Moisture Active Passive (SMAP) radiometer, and the retrieved wind speeds have RMSE of 3.667 m/s and a bias of 2.767 m/s. The successful applications in high wind speed retrieval of different tropical cyclones again supports the availability of the new GMF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.