a b s t r a c tData aggregation in Geographic Information Systems (GIS) is a desirable feature, only marginally present in commercial systems nowadays, mostly through ad hoc solutions. We address this problem introducing a formal model that integrates, in a natural way, geographic data and non-spatial information contained in a data warehouse external to the GIS. This approach allows both aggregation of geometric components and aggregation of measures associated to those components, defined in GIS fact tables. We define the notion of geometric aggregation, a general framework for aggregate queries in a GIS setting. Although general enough to express a wide range of (aggregate) queries, some of these queries can be hard to compute in a real-world GIS environment because they involve computing an integral over a certain area. Thus, we identify the class of summable queries, which can be efficiently evaluated replacing this integral with a sum of functions of geometric objects. Integration of GIS and OLAP (On Line Analytical Processing) is supported also through a language, GISOLAP-QL. We present an implementation, denoted Piet, which supports four kinds of queries: standard GIS, standard OLAP, geometric aggregation (like ''total population in states with more than three airports''), and integrated GIS-OLAP queries (''total sales by product in cities crossed by a river'', also allowing navigation of the results). Further, Piet implements a novel query processing technique: first, a process called subpolygonization decomposes each thematic layer in a GIS, into open convex polygons; then, another process (the overlay precomputation) computes and stores in a database the overlay of those layers for later use by a query processor. Experimental evaluation showed that for a wide class of geometric queries, overlay precomputation outperforms R-tree-based techniques, suggesting that it can be an alternative for GIS query processing.
This article studies the analysis of moving object data collected by location‐aware devices, such as GPS, using graph databases. Such raw trajectories can be transformed into so‐called semantic trajectories, which are sequences of stops that occur at “places of interest.” Trajectory data analysis can be enriched if spatial and non‐spatial contextual data associated with the moving objects are taken into account, and aggregation of trajectory data can reveal hidden patterns within such data. When trajectory data are stored in relational databases, there is an “impedance mismatch” between the representation and storage models. Graphs in which the nodes and edges are annotated with properties are gaining increasing interest to model a variety of networks. Therefore, this article proposes the use of graph databases (Neo4j in this case) to represent and store trajectory data, which can thus be analyzed at different aggregation levels using graph query languages (Cypher, for Neo4j). Through a real‐world public data case study, the article shows that trajectory queries are expressed more naturally on the graph‐based representation than over the relational alternative, and perform better in many typical cases.
We address aggregate queries over GIS data and moving object data, where non-spatial information is stored in a data warehouse. We propose a formal data model and query language to express complex aggregate queries. Next, we study the compression of trajectory data, produced by moving objects, using the notions of stops and moves. We show that stops and moves are expressible in our query language and we consider a fragment of this language, consisting of regular expressions to talk about temporally ordered sequences of stops and moves. This fragment can be used not only for querying, but also for expressing data mining and pattern matching tasks over trajectory data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.