In this paper a computational alternative to classify lung nodules inside CT thorax images in the frequency domain is presented. After image acquisition, a region of interest is manually selected. Then, the spectrums of the two dimensional Discrete Cosine Transform (2D-DCT) and the two dimensional Fast Fourier Transform (2D-FFT) were calculated. Later, two statistical texture features were extracted from the histogram computed from the spectrum of each CT image. Finally, a support vector machine with a radial basis function as a kernel was used as the classifier. Seventy five tests with different diagnosis and number of images were used to validate the methodology presented. After experimentation and results, ten false negatives (FN) and two false positives (FP) were obtained, and a sensitivity and specificity of 96.15% and 52.17% respectively. The total preciseness obtained with the methodology proposed was 82.66%.
In this paper, we address the problem of denoising reconstructed small animal positron emission tomography (PET) images, based on a multiresolution approach which can be implemented with any transform such as contourlet, shearlet, curvelet, and wavelet. The PET images are analyzed and processed in the transform domain by modeling each subband as a set of different regions separated by boundaries. Homogeneous and heterogeneous regions are considered. Each region is independently processed using different filters: a linear estimator for homogeneous regions and a surface polynomial estimator for the heterogeneous region. The boundaries between the different regions are estimated using a modified edge focusing filter. The proposed approach was validated by a series of experiments. Our method achieved an overall reduction of up to 26% in the %STD of the reconstructed image of a small animal NEMA phantom. Additionally, a test on a simulated lesion showed that our method yields better contrast preservation than other state-of-the art techniques used for noise reduction. Thus, the proposed method provides a significant reduction of noise while at the same time preserving contrast and important structures such as lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.