The Flavivirus genus is composed by viral serocomplexes with relevant global epidemiological impact. Many areas of the world present both, vector fauna and geographical conditions compatible with co-circulation, importing, emergence, and epidemics of flaviviruses of different serocomplexes. In this study, we aimed to identify both, immunological determinants and patterns of immune response possibly involved in flavivirus serocomplex cross-protection. We searched B and T cells epitopes which were thoroughly shown to be involved in flavivirus immunological control. Such epitopes were analyzed regarding their conservation, population coverage, and location along flavivirus polyprotein. We found that epitopes capable of eliciting flavivirus cross-protective immunity to a wide range of human populations are concentrated in proteins E, NS3, and NS5. Such identification of both, immunological determinants and patterns of immune response involved in flavivirus cross-protective immunity should be considered in future vaccine development. Moreover, cross-reactive epitopes presented in this work may be involved in dynamics of diseases caused by flaviviruses worldwide.
One of the main problems with dengue is the control of Aedes aegypti, its major vector. In Brazil, the current control program for Ae. aegypti and Aedes albopictus populations includes larval density surveys. An interesting alternative is the use of a distinct index, the Premise Condition Index (PCI). This tool relates conditions of property, such as houses and yards, and the degree of shade with the occurrence of Aedes sp. oviposition, and is calculated as scores from 3 to 9. The lowest score indicates property in good condition and an unfavorable breeding environment, while the highest score indicates property at high risk for infestation by Aedes sp. The present study is based on the application of the PCI in an urban area of Botucatu, Brazil to confirm its effectiveness.
Leishmania infantum is the etiological agent of visceral leishmaniasis (VL) in the Americas with domestic dogs being its major reservoir hosts. The main VL vector is the sandfly Lutzomyia longipalpis, while other Lutzomyia species may play a role in disease transmission. Although the genetic structure of L. infantum populations has been widely evaluated, only a few studies have addressed this subject coupled to the genetic structure of the respective sandfly vectors. In this study, we analyzed the population structure of L. infantum in three major VL endemic areas in Brazil and associated it with Lutzomyia longipalpis geographic structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.