We exposed water samples from a recreational lake dominated by the cyanobacterium Planktothrix agardhii to different concentrations of hydrogen peroxide (H2O2). An addition of 0.33 mg·L−1 of H2O2 was the lowest effective dose for the decay of chlorophyll-a concentration to half of the original in 14 h with light and 17 h in experiments without light. With 3.33 mg·L−1 of H2O2, the values of the chemical oxygen demand (COD) decreased to half at 36 and 126 h in experiments performed with and without light, respectively. With increasing H2O2, there is a decrease in the total and faecal coliform, and this effect was made more pronounced by light. Total and faecal coliform were inhibited completely 48 h after addition of 3.33 mg·L−1 H2O2. Although the densities of cyanobacterial cells exposed to H2O2 did not decrease, transmission electron microscope observation of the trichomes showed several stages of degeneration, and the cells were collapsed after 48 h of 3.33 mg·L−1 of H2O2 addition in the presence of light. Our results demonstrate that H2O2 could be potentially used in hypertrophic systems because it not only collapses cyanobacterial cells and coliform bacteria but may also reduce chlorophyll-a content and chemical oxygen demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.