We suggest that tasks exploring executive functions involved in discriminating conflicting stimuli may be the most suitable to unmask the cognitive-postural interference phenomenon in patients with MS. This may support the hypothesis that MS-related damage constrains brain networks to subserve both postural control and executive functions.
Multiple sclerosis (MS) is a disease that heavily affects postural control, predisposing patients to accidental falls and fall-related injuries, with a relevant burden on their families, health care systems and themselves. Clinical scales aimed to assess balance are easy to administer in daily clinical setting, but suffer from several limitations including their variable execution, subjective judgment in the scoring system, poor performance in identifying patients at higher risk of falls, and statistical concerns mainly related to distribution of their scores. Today we are able to objectively and reliably assess postural control not only with laboratory-grade standard force platform, but also with low-cost systems based on commercial devices that provide acceptable comparability to gold-standard equipment. The sensitivity of measurements derived from force platforms is such that we can detect balance abnormalities even in minimally impaired patients and predict the risk of future accidental falls accurately. By manipulating sensory inputs (dynamic posturography) or by adding a concurrent cognitive task (dual-task paradigm) to the standard postural assessment, we can unmask postural control deficit even in patients at first demyelinating event or in those with a radiologic isolated syndrome. Studies on neuroanatomical correlates support the multifactorial etiology of postural control deficit in MS, with the association with balance impairment being correlated with cerebellum, spinal cord, and highly ordered processing network according to different studies. Postural control deficit can be managed by means of rehabilitation, which is the most important way to improve balance in patients with MS, but there are also suggestions of a beneficial effect of some pharmacologic interventions. On the other hand, it would be useful to pay attention to some drugs that are currently used to manage other symptoms in daily clinical setting because they can further impair postural controls of patients with MS.
Objective:To investigate the disease-altered structure–function relationship underlying the cognitive–postural interference (CPI) phenomenon in multiple sclerosis (MS).Methods:We measured postural sway of 96 patients and 48 sex-/age-matched healthy controls by force platform in quiet standing (single-task (ST)) while performing the Stroop test (dual-task (DT)) to estimate the dual-task cost (DTC) of balance. In patient group, binary T2 and T1 lesion masks and their corresponding lesion volumes were obtained from magnetic resonance imaging (MRI) of brain. Normalized brain volume (NBV) was also estimated by SIENAX. Correlations between DTC and lesion location were determined by voxel-based lesion symptom mapping (VLSM) analyses.Results:Patients had greater DTC than controls (p < 0.001). Among whole brain MRI metrics, only T1 lesion volume correlated with DTC (r = −0.27; p < 0.01). However, VLSM analysis did not reveal any association with DTC using T1 lesion masks. By contrast, we found clusters of T2 lesions in distinct anatomical regions (anterior and superior corona radiata, bilaterally) to be correlated with DTC (p < 0.01 false discovery rate (FDR)-corrected). A multivariable stepwise regression model confirmed findings from VLSM analysis. NBV did not contribute to fit the model.Conclusion:Our findings suggest that the CPI phenomenon in MS can be explained by disconnection along specific areas implicated in task-switching abilities and divided attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.