Electrochemical conditioning via chronopotentiometry (CP) and cyclic voltammetry (CV) is essential for the activation of oxygen evolution reaction (OER) electrocatalysts. While many reports have activated OER electrocatalysts using either CP or CV, the inherent differences between these two electrochemical conditioning methods for the activation of OER electrocatalytic materials have yet to be explored. Here, we investigate the effects of CP and CV electrochemical conditioning on a Ni-based OER precatalyst and substrate in Fe-purified and Fe-unpurified KOH electrolytes by employing (i) Ni foil, (ii) NiSe precatalyst films with different thicknesses on the fluorine-doped tin oxide glass substrate, and (iii) NiSe precatalyst films on Ni foil substrates. It was found that CV electrochemical conditioning can result in a higher degree of in situ oxidation and Fe incorporation for Ni-based precatalysts and substrates compared to CP electrochemical conditioning. In turn, this brought about different material properties (e.g., in situ oxidized layer thickness, composition, crystallinity, and morphology) and electrochemical characteristics (e.g., active surface area, electron transport limitation, and intrinsic activity) of Ni-based electrocatalysts, thereby not only affecting their OER activity but also complicating the interpretation of the origin of OER activity. This study identifies the distinct effects of CP and CV electrochemical conditioning on Ni-based OER electrocatalysts and provides insight into the choice of the electrochemical conditioning method to better investigate OER electrocatalysts.
Alkaline water electrolysis, a promising technology for clean energy storage, is constrained by extrinsic factors in addition to intrinsic electrocatalytic activity. To begin to compare between catalytic materials for electrolysis applications, these extrinsic factors must first be understood and controlled. Here, we modify extrinsic electrode properties and study the effects of bubble release to examine how the electrode and surface design impact the performance of water electrolysis. We fabricate robust and cost-effective electrodes through a sequential three-dimensional (3D) printing and metal deposition procedure. Through a systematic assessment of the deposition procedure, we confirm the close relationship between extrinsic electrode properties (i.e., wettability, surface roughness, and electrochemically active surface area) and electrochemical performance. Modifying the electrode geometry, size, and electrolyte flow rate results in an overpotential decrease and different bubble diameters and lifetimes for the hydrogen (HER) and oxygen evolution reactions (OER). Hence, we demonstrate the essential role of the electrode architecture and forced electrolyte convection on bubble release. Additionally, we confirm the suitability of ordered, Ni-coated 3D porous structures by evaluating the HER/OER performance, bubble dissipation, and long-term stability. Finally, we utilize the 3D porous electrode as a support for studying a benchmark NiFe electrocatalyst, confirming the robustness and effectiveness of 3D-printed electrodes for testing electrocatalytic materials while extrinsic properties are precisely controlled. Overall, we demonstrate that tailoring electrode architectures and surface properties result in precise tuning of extrinsic electrode properties, providing more reproducible and comparable conditions for testing the efficiency of electrode materials for water electrolysis.
Potassium poly(heptazine imide) (KPHI) has recently garnered attention as a crystalline carbon nitride framework with considerable photoelectrochemical activity. Here, we report a Ca2+-complexed analogue of PHI: calcium poly(heptazine imide) (CaPHI). Despite similar polymer backbone, CaPHI and KPHI exhibit markedly different crystal structures. Spectroscopic, crystallographic, and physisorptive characterization reveal that Ca2+ acts as a structure-directing agent to transform melon-based carbon nitride to crystalline CaPHI with ordered pore channels, extended visible light absorption, and altered band structure as compared to KPHI. Upon acid washing, protons replace Ca2+ atoms in CaPHI to yield H+/CaPHI and enhance porosity without disrupting crystal structure. Further, these proton-exchanged PHI frameworks exhibit large adsorption affinity for CO2 and exceptional performance for selective carbon capture from dilute streams. Compared to a state-of-the-art metal organic framework, UTSA-16, H+/CaPHI exhibits more than twice the selectivity (∼300 vs ∼120) and working capacity (∼1.2 mmol g–1 vs ∼0.5 mmol g–1) for a feed of 4% CO2 (1 bar, 30 °C).
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.2c05655.Experimental details, a scheme (experimental design), calculation details, digital photographs, tables (calculation parameters and results), time−potential curves (SCE vs Hg/HgO), SEM and EDX elemental mapping images, and EDX spectra (PDF)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.