Despite the World Anti-Doping Agency (WADA) ban on gene doping in the context of advancements in gene therapy, the risk of EPO gene-based doping among athletes is still present. To address this and similar risks, gene-doping tests are being developed in doping control laboratories worldwide. In this regard, the present study was performed with two objectives: to develop a robust gene-doping mouse model with the human EPO gene (hEPO) transferred using recombinant adenovirus (rAdV) as a vector and to develop a detection method to identify gene doping by using this model. The rAdV including the hEPO gene was injected intravenously to transfer the gene to the liver. After injection, the mice showed significantly increased whole-blood red blood cell counts and increased expression of hematopoietic marker genes in the spleen, indicating successful development of the gene-doping model. Next, direct and potentially indirect proof of gene doping were evaluated in whole-blood DNA and RNA by using a quantitative PCR assay and RNA sequencing. Proof of doping could be detected in DNA and RNA samples from one drop of whole blood for approximately a month; furthermore, the overall RNA expression profiles showed significant changes, allowing advanced detection of hEPO gene doping.
The global incidence of breast cancer has been on the rise since the late 1970s. [1][2][3] Glycoprotein non-metastatic melanoma protein B (GPNMB), a type I transmembrane protein, is highly expressed in various cancers, including breast cancer. A high level of GPNMB expression is
Recently, fasting has been spotlighted from a healthcare perspective. However, the de-tailed biological mechanisms and significance by which the effects of fasting confer health benefits are not yet clear. Due to certain advantages of the zebrafish as a vertebrate model, it is widely utilized in biological studies. However, the biological responses to nutrient metabolism within zebrafish skeletal muscles have not yet been amply reported. Therefore, we aimed to reveal a gene expression profile in zebrafish skeletal muscles in response to fasting-refeeding. Accordingly, mRNA-sequencing and bioinformatics analysis were performed to examine comprehensive gene expression changes in skeletal muscle tissues during fasting-refeeding. Our results produced a novel set of nutrition-related genes under a fasting-refeeding protocol. Moreover, we found that five genes were dramatically upregulated in each fasting (for 24 h) and refeeding (after 3 h), exhibiting a rapid response to the provided conditional changes. The assessment of the gene length revealed that the gene set whose expression was elevated only after 3 h of refeeding had a shorter length, suggesting that nutrition-related gene function is associated with gene length. Taken together, our results from the bioinformatics analyses provide new insights into biological mechanisms induced by fasting-refeeding conditions within zebrafish skeletal muscle.
Laryngeal squamous cell carcinoma (LSCC), although one of the most common head and neck cancers, has a static or slightly decreased survival rate because of difficulties in early diagnosis, lack of effective molecular targeting therapy, and severe dysfunction after radical surgical treatments. Therefore, a novel therapeutic target is crucial to increase treatment efficacy and survival rates in these patients. Glycoprotein NMB (GPNMB), whose role in LSCC remains elusive, is a type 1 transmembrane protein involved in malignant progression of various cancers, and its high expression is thought to be a poor prognostic factor. In this study, we showed that GPNMB expression levels in LSCC samples are significantly higher than those in normal tissues, and GPNMB expression is observed mostly in growth‐arrested cancer cells. Furthermore, knockdown of GPNMB reduces monolayer cellular proliferation, cellular migration, and tumorigenic growth, while GPNMB protein displays an inverse relationship with Ki‐67 levels. Therefore, we conclude that GPNMB may be an attractive target for future LSCC therapy.
The World Anti-Doping Agency (WADA) has prohibited gene doping in the context of progress in gene therapy. In addition, there is a risk of the EPO gene being applied in gene doping among athletes. Along with this, development of a gene-doping test has been underway in worldwide. Here, we had two purposes: to develop a robust gene doping mouse model using the human EPO gene (hEPO) transferred using recombinant adenovirus (rAdV) as a vector and to develop a detection method to prove gene doping using this model. The rAdV including the hEPO gene were injected intravenously to transfer the gene to the liver. After injection, the mice developed significantly increased red blood cell counts in whole blood and increased gene expressions of hematopoietic markers in the spleen, indicating successful development of the gene doping model. Next, we detected direct and indirect proof of gene doping in whole blood DNA and RNA using qPCR assay and RNA sequencing. Proof was detected in one drop of whole blood DNA and RNA over a long period; furthermore, the overall RNA expression profiles significantly changed. Therefore, we have advanced detection of hEPO gene doping in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.