Assessing the intracity spatial distribution and temporal variability in air quality can be facilitated by a dense network of monitoring stations. However, the cost of implementing such a network can be prohibitive if traditional high-quality, expensive monitoring systems are used. To this end, the Real-time Affordable Multi-Pollutant (RAMP) monitor has been developed, which can measure up to five gases including the criteria pollutant gases carbon monoxide (CO), nitrogen dioxide (NO 2 ), and ozone (O 3 ), along with temperature and relative humidity. This study compares various algorithms to calibrate the RAMP measurements including linear and quadratic regression, clustering, neural networks, Gaussian processes, and hybrid random forest-linear regression models. Using data collected by almost 70 RAMP monitors over periods ranging up to 18 months, we recommend the use of limited quadratic regression calibration models for CO, neural network models for NO, and hybrid models for NO 2 and O 3 for any low-cost monitor using electrochemical sensors similar to those of the RAMP. Furthermore, generalized calibration models may be used instead of individual models with only a small reduction in overall performance. Generalized models also transfer better when the RAMP is deployed to other locations. For long-term deployments, it is recommended that model performance be re-evaluated and new models developed periodically, due to the noticeable change in performance over periods of a year or more. This makes generalized calibration models even more useful since only a subset of deployed monitors are needed to build these new models. These results will help guide future efforts in the calibration and use of low-cost sensor systems worldwide.Published by Copernicus Publications on behalf of the European Geosciences Union.
In topology optimization using deep learning, the load and boundary conditions represented as vectors or sparse matrices often miss the opportunity to encode a rich view of the design problem, leading to less than ideal generalization results. We propose a new data-driven topology optimization model called TopologyGAN that takes advantage of various physical fields computed on the original, unoptimized material domain, as inputs to the generator of a conditional generative adversarial network (cGAN). Compared to a baseline cGAN, TopologyGAN achieves a nearly 3 × reduction in the mean squared error and a 2.5 × reduction in the mean absolute error on test problems involving previously unseen boundary conditions. Built on several existing network models, we also introduce a hybrid network called U-SE(Squeeze-and-Excitation)-ResNet for the generator that further increases the overall accuracy. We publicly share our full implementation and trained network.
The demand for fast and accurate structural analysis is becoming increasingly more prevalent with the advance of generative design and topology optimization technologies. As one step toward accelerating structural analysis, this work explores a deep learning based approach for predicting the stress fields in 2D linear elastic cantilevered structures subjected to external static loads at its free end using convolutional neural networks (CNN). Two different architectures are implemented that take as input the structure geometry, external loads, and displacement boundary conditions, and output the predicted von Mises stress field. The first is a single input channel network called SCSNet as the baseline architecture, and the second is the multi-channel input network called StressNet. Accuracy analysis shows that StressNet results in significantly lower prediction errors than SCSNet on three loss functions, with a mean relative error of 2.04% for testing. These results suggest that deep learning models may offer a promising alternative to classical methods in structural design and topology optimization. Code and dataset are available at https: // github. com/ zhenguonie/ stress_ net
We propose a shape editing method where the user creates geometric deformations using a set of semantic attributes, thus avoiding the need for detailed geometric manipulations. In contrast to prior work, we focus on continuous deformations instead of discrete part substitutions. Our method provides a platform for quick design explorations and allows non-experts to produce semantically guided shape variations that are otherwise difficult to attain. We crowdsource a large set of pairwise comparisons between the semantic attributes and geometry and use this data to learn a continuous mapping from the semantic attributes to geometry. The resulting map enables simple and intuitive shape manipulations based solely on the learned attributes. We demonstrate our method on large datasets using two different user interaction modes and evaluate its usability with a set of user studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.