In topology optimization using deep learning, the load and boundary conditions represented as vectors or sparse matrices often miss the opportunity to encode a rich view of the design problem, leading to less than ideal generalization results. We propose a new data-driven topology optimization model called TopologyGAN that takes advantage of various physical fields computed on the original, unoptimized material domain, as inputs to the generator of a conditional generative adversarial network (cGAN). Compared to a baseline cGAN, TopologyGAN achieves a nearly 3 × reduction in the mean squared error and a 2.5 × reduction in the mean absolute error on test problems involving previously unseen boundary conditions. Built on several existing network models, we also introduce a hybrid network called U-SE(Squeeze-and-Excitation)-ResNet for the generator that further increases the overall accuracy. We publicly share our full implementation and trained network.
The demand for fast and accurate structural analysis is becoming increasingly more prevalent with the advance of generative design and topology optimization technologies. As one step toward accelerating structural analysis, this work explores a deep learning based approach for predicting the stress fields in 2D linear elastic cantilevered structures subjected to external static loads at its free end using convolutional neural networks (CNN). Two different architectures are implemented that take as input the structure geometry, external loads, and displacement boundary conditions, and output the predicted von Mises stress field. The first is a single input channel network called SCSNet as the baseline architecture, and the second is the multi-channel input network called StressNet. Accuracy analysis shows that StressNet results in significantly lower prediction errors than SCSNet on three loss functions, with a mean relative error of 2.04% for testing. These results suggest that deep learning models may offer a promising alternative to classical methods in structural design and topology optimization. Code and dataset are available at https: // github. com/ zhenguonie/ stress_ net
Spatter is an inherent, unpreventable, and undesired phenomenon in laser powder bed fusion (L-PBF) additive manufacturing. Spatter behavior has an intrinsic correlation with the forming quality in L-PBF because it leads to metallurgical defects and the degradation of mechanical properties. This impact becomes more severe in the fabrication of large-sized parts during the multi-laser L-PBF process. Therefore, investigations of spatter generation and countermeasures have become more urgent. Although much research has provided insights into the melt pool, microstructure, and mechanical property, reviews of spatter in L-PBF are still limited. This work reviews the literature on the in situ detection, generation, effects, and countermeasures of spatter in L-PBF. It is expected to pave the way towards a novel generation of highly efficient and intelligent L-PBF systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.