A critical event in the apoptotic cascade is the proteolytic activation of procaspases to active caspases. The caspase autoactivating compound PAC-1 induces cancer cell apoptosis and exhibits antitumor activity in murine xenograft models when administered orally as a lipid-based formulation or implanted s.c. as a cholesterol pellet. However, high doses of PAC-1 were found to induce neurotoxicity, prompting us to design and assess a novel PAC-1 derivative called S-PAC-1. Similar to PAC-1, S-PAC-1 activated procaspase-3 and induced cancer cell apoptosis. However, S-PAC-1 did not induce neurotoxicity in mice or dogs. Continuous i.v. infusion of S-PAC-1 in dogs led to a steady-state plasma concentration of ∼10 μmol/L for 24 to 72 hours. In a small efficacy trial of S-PAC-1, evaluation of six pet dogs with lymphoma revealed that S-PAC-1 was well tolerated and that the treatments induced partial tumor regression or stable disease in four of six subjects. Our results support this canine setting for further evaluation of small-molecule procaspase-3 activators, including S-PAC-1, a compound that is an excellent candidate for further clinical evaluation as a novel cancer chemotherapeutic. Cancer Res; 70(18); 7232-41. ©2010 AACR.
OBJECTIVE To characterize long-term elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate (CI-CSH) beads in vitro by comparing 2 distinct sample collection methods designed to mimic 2 in vivo environments. SAMPLES 162 CI-CSH beads containing 4.6 mg of carboplatin (2.4 mg of platinum/bead). PROCEDURES For method 1, which mimicked an in vivo environment with rapid and complete fluid exchange, each of 3 plastic 10-mL conical tubes contained 3 CI-CSH beads and 5 mL of PBS solution. Eluent samples were obtained by evacuation of all fluid at 1, 2, 3, 6, 9, and 12 hours and 1, 2, 3, 6, 9, 12, 15, 18, 22, 26, and 30 days. Five milliliters of fresh PBS solution was then added to each tube. For method 2, which mimicked an in vivo environment with no fluid exchange, each of 51 tubes (ie, 3 tubes/17 sample collection times) contained 3 CI-CSH beads and 5 mL of PBS solution. Eluent samples were obtained from the assigned tubes for each time point. All samples were analyzed for platinum content by inductively coupled plasma-mass spectrometry. RESULTS Platinum was released from CI-CSH beads for 22 to 30 days. Significant differences were found in platinum concentration and percentage of platinum eluted from CI-CSH beads over time for each method. Platinum concentrations and elution percentages in method 2 samples were significantly higher than those of method 1 samples, except for the first hour measurements. CONCLUSIONS AND CLINICAL RELEVANCE Sample collection methods 1 and 2 may provide estimates of the minimum and maximum platinum release, respectively, from CI-CSH beads in vivo.
Lidocaine is a local anaesthetic agent that is widely used in equine medicine. It is also an Association of Racing Commissioners International (ARCI) Class 2 foreign substance that may cause regulators to impose substantial penalties if residues are identified in post race urine samples. Therefore, an analytical/pharmacological database was developed for this drug. Using our abaxial sesamoid local anaesthetic model, the highest no-effect dose (HNED) for the local anaesthetic effect of lidocaine was determined to be 4 mg. Using enzyme-linked immunosorbent assay (ELISA) screening, administration of the HNED of lidocaine to eight horses yielded peak serum and urine concentrations of apparent lidocaine of 0.84 ng/mL at 30 min and 72.8 ng/mL at 60 min after injection, respectively. These concentrations of apparent lidocaine are readily detectable by routine ELISA screening tests (LIDOCAINE ELISA, Neogen, Lexington, KY). ELISA screening does not specifically identify lidocaine or its metabolites, which include 3-hydroxylidocaine, dimethylaniline, 4-hydroxydimethylaniline, monoethylglycinexylidine, 3-hydroxymonoethylglycinexylidine, and glycinexylidine. As 3-hydroxylidocaine is the major metabolite recovered from equine urine, it was synthesized, purified and characterized, and a quantitative mass spectrometric method was developed for 3-hydroxylidocaine as recovered from horse urine. Following subcutaneous (s.c.) injection of the HNED of lidocaine, the concentration of 3-hydroxylidocaine recovered from urine reached a peak of about 315 ng/mL at 1 h after administration. The mean pH of the 1 h post dosing urine samples was 7. 7, and there was no apparent effect of pH on the amount of 3-hydroxylidocaine recovered. Within the context of these experiments, the data suggests that recovery of less than 315 ng/mL of 3-hydroxylidocaine from a post race urine sample is unlikely to be associated with a recent local anaesthetic effect of lidocaine. Therefore these data may be of assistance to industry professionals in evaluating the significance of small concentrations of lidocaine or its metabolites in postrace urine samples. It should be noted that the quantitative data are based on analytical methods developed specifically for this study, and that methods used by other laboratories may yield different recoveries of urine 3-hydroxylidocaine.
OBJECTIVE To characterize the elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate (CSH) beads in vitro. SAMPLE 60 carboplatin-impregnated CSH beads and 9 CSH beads without added carboplatin (controls). PROCEDURES Carboplatin-impregnated CSH beads (each containing 4.6 mg of carboplatin [2.4 mg of platinum]) were placed into separate 10-mL plastic tubes containing 5 mL of PBSS in groups of 1, 3, 6, or 10; 3 control beads were placed into a single tube of PBSS at the same volume. Experiments were conducted in triplicate at 37°C and a pH of 7.4 with constant agitation. Eluent samples were collected at 1, 2, 3, 6, 12, 24, and 72 hours. Samples were analyzed for platinum content by inductively coupled plasma-mass spectrometry. RESULTS The mean concentration of platinum released per carboplatin-impregnated bead over 72 hours was 445.3 mg/L. Cumulative concentrations of platinum eluted increased as the number of beads per tube increased. There was a significant difference in platinum concentrations over time, with values increasing over the first 12 hours and then declining for all tubes. There was also a significant difference in percentage of total incorporated platinum released into tubes with different numbers of beads: the percentage of eluted platinum was higher in tubes containing 1 or 3 beads than in those containing 6 or 10 beads. CONCLUSIONS AND CLINICAL RELEVANCE Carboplatin-impregnated CSH beads eluted platinum over 72 hours. Further studies are needed to determine whether implantation of carboplatin-impregnated CSH beads results in detectable levels of platinum systemically and whether the platinum concentrations eluted locally are toxic to tumor cells.
Diclazuril (4-chlorophenyl [2,6-dichloro-4-(4,5-dihydro-3H-3,5-dioxo-1,2,4-triazin-2-yl)pheny l] acetonitrile), is a benzeneacetonitrile antiprotozoal agent (Janssen Research Compound R 64433) marketed as Clinacox . Diclazuril may have clinical application in the treatment of Equine Protozoal Myeloencephalitis (EPM). To evaluate its bioavailability and preliminary pharmacokinetics in the horse we developed a sensitive quantitative high-pressure liquid chromatography (HPLC) method for diclazuril in equine biological fluids. MS/MS analysis of diclazuril in our HPLC solvent yielded mass spectral data consistent with the presence of diclazuril. After a single oral dose of diclazuril at 2.5 g/450 kg (as 500 g Clinacox), plasma samples from four horses showed good plasma concentrations of diclazuril which peaked at 1.077 +/- 0.174 microg/mL (mean +/- SEM) with an apparent plasma half-life of about 43 h. When this dose of Clinacox was administered daily for 21 days to two horses, mean steady state plasma concentrations of 7-9 microg/mL were attained. Steady-state levels in the CSF ranged between 100 and 250 ng/mL. There was no detectable parent diclazuril in the urine samples of dosed horses by HPLC or by routine postrace thin layer chromatography (TLC). These results show that diclazuril is absorbed after oral administration and attains steady-state concentrations in plasma and CSF. The steady state concentrations attained in CSF are more than sufficient to interfere with Sarcocystis neurona, whose proliferation is reportedly 95% inhibited by concentrations of diclazuril as low as 1 ng/mL. These results are therefore entirely consistent with and support the reported clinical efficacy of diclazuril in the treatment of clinical cases of EPM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.