The purpose of this systematic review was to (a) systematically review the literature to identify National Longitudinal Transition Study-2 secondary analyses articles published since 2009 that met the quality indicators for correlational research, (b) further extend the findings of Test et al. by identifying additional evidence to support the existing in-school predictors of post-school success, and (c) identify any new in-school predictors of post-school success for youth with disabilities. Based on the results of this systematic review, results of the analysis added additional evidence to nine of the Test et al.'s predictors further expanding the literature base to support evidence-based predictors of post-school success. Limitations and implications for research and practice are discussed.
Phenylbutazone is an acidic, lipophilic, non-steroidal anti-inflammatory drug (NSAID). It is extensively metabolized in the horse. The metabolites so far identified, oxyphenbutazone, gamma-hydroxyoxyphenbutazone, account for some 25-30% of administered dose over 24 h. The plasma half-life of phenylbutazone and termination of its pharmacological action are determined primarily by its rate of hepatic metabolism. Phenylbutazone acts by inhibiting the cyclooxygenase enzyme system, which is responsible for synthesis of prostanoids such as PGE2. It appears to act on prostaglandin-H synthase and prostacyclin synthase, after conversion by prostaglandin-H synthase to reactive intermediates. It markedly reduces prostanoid-dependent swelling, edema, erythema, and hypersensitivity to pain in inflamed tissues. Its principal use in the horse is for treatment of soft tissue inflammation. Phenylbutazone is highly bound (greater than 98%) to plasma protein. After i.v. injection, blood levels decline with an elimination half-life of 3-10 h. The plasma kinetics of phenylbutazone may be dose dependent, with the plasma half-life increasing as the drug dosage level increases. Plasma residues of the drug at 24 h after a single i.v. dose of 2 g/450 kg average about 0.9 microgram/ml, but considerable variation occurs. If dosing is repeated, the plasma residue accumulates to give mean residual blood levels of approximately 4.5 microgram/ml on Day 5 after 4 days of dosing. Approximately similar blood levels are found after a combination of oral and i.v. dosing. Experiments on large numbers of horses in training have been undertaken to ascertain the population distributions of residual blood levels after such dosing schedules. Absorption of phenylbutazone from the gastrointestinal tract is influenced by the dose administered and the relationship of dosing to feeding. Access to hay can delay the time of peak plasma concentration to 18 h or longer. Under optimal conditions, the bioavailability of oral phenylbutazone is probably in the region of 70%. Paste preparations may be more slowly absorbed than other preparations and yield higher residual plasma levels at 24 h after dosing, but further controlled studies are required. Phenylbutazone is easily detected in the plasma and urine of horses but concentrations in saliva are low. It is quantitated for forensic purposes by HPLC. The variability of this method between laboratories is about +/- 25%. Increasing urinary pH increases the urinary concentration of phenylbutazone and its metabolites up to 200-fold.(ABSTRACT TRUNCATED AT 400 WORDS)
Lidocaine is a local anaesthetic agent that is widely used in equine medicine. It is also an Association of Racing Commissioners International (ARCI) Class 2 foreign substance that may cause regulators to impose substantial penalties if residues are identified in post race urine samples. Therefore, an analytical/pharmacological database was developed for this drug. Using our abaxial sesamoid local anaesthetic model, the highest no-effect dose (HNED) for the local anaesthetic effect of lidocaine was determined to be 4 mg. Using enzyme-linked immunosorbent assay (ELISA) screening, administration of the HNED of lidocaine to eight horses yielded peak serum and urine concentrations of apparent lidocaine of 0.84 ng/mL at 30 min and 72.8 ng/mL at 60 min after injection, respectively. These concentrations of apparent lidocaine are readily detectable by routine ELISA screening tests (LIDOCAINE ELISA, Neogen, Lexington, KY). ELISA screening does not specifically identify lidocaine or its metabolites, which include 3-hydroxylidocaine, dimethylaniline, 4-hydroxydimethylaniline, monoethylglycinexylidine, 3-hydroxymonoethylglycinexylidine, and glycinexylidine. As 3-hydroxylidocaine is the major metabolite recovered from equine urine, it was synthesized, purified and characterized, and a quantitative mass spectrometric method was developed for 3-hydroxylidocaine as recovered from horse urine. Following subcutaneous (s.c.) injection of the HNED of lidocaine, the concentration of 3-hydroxylidocaine recovered from urine reached a peak of about 315 ng/mL at 1 h after administration. The mean pH of the 1 h post dosing urine samples was 7. 7, and there was no apparent effect of pH on the amount of 3-hydroxylidocaine recovered. Within the context of these experiments, the data suggests that recovery of less than 315 ng/mL of 3-hydroxylidocaine from a post race urine sample is unlikely to be associated with a recent local anaesthetic effect of lidocaine. Therefore these data may be of assistance to industry professionals in evaluating the significance of small concentrations of lidocaine or its metabolites in postrace urine samples. It should be noted that the quantitative data are based on analytical methods developed specifically for this study, and that methods used by other laboratories may yield different recoveries of urine 3-hydroxylidocaine.
Diclazuril (4-chlorophenyl [2,6-dichloro-4-(4,5-dihydro-3H-3,5-dioxo-1,2,4-triazin-2-yl)pheny l] acetonitrile), is a benzeneacetonitrile antiprotozoal agent (Janssen Research Compound R 64433) marketed as Clinacox . Diclazuril may have clinical application in the treatment of Equine Protozoal Myeloencephalitis (EPM). To evaluate its bioavailability and preliminary pharmacokinetics in the horse we developed a sensitive quantitative high-pressure liquid chromatography (HPLC) method for diclazuril in equine biological fluids. MS/MS analysis of diclazuril in our HPLC solvent yielded mass spectral data consistent with the presence of diclazuril. After a single oral dose of diclazuril at 2.5 g/450 kg (as 500 g Clinacox), plasma samples from four horses showed good plasma concentrations of diclazuril which peaked at 1.077 +/- 0.174 microg/mL (mean +/- SEM) with an apparent plasma half-life of about 43 h. When this dose of Clinacox was administered daily for 21 days to two horses, mean steady state plasma concentrations of 7-9 microg/mL were attained. Steady-state levels in the CSF ranged between 100 and 250 ng/mL. There was no detectable parent diclazuril in the urine samples of dosed horses by HPLC or by routine postrace thin layer chromatography (TLC). These results show that diclazuril is absorbed after oral administration and attains steady-state concentrations in plasma and CSF. The steady state concentrations attained in CSF are more than sufficient to interfere with Sarcocystis neurona, whose proliferation is reportedly 95% inhibited by concentrations of diclazuril as low as 1 ng/mL. These results are therefore entirely consistent with and support the reported clinical efficacy of diclazuril in the treatment of clinical cases of EPM.
Summary Hordenine is an alkaloid occurring naturally in grains, sprouting barley, and certain grasses. It is occasionally found in post race urine samples, and therefore we investigated its pharmacological actions in the horse. Hordenine (2.0 mg/kg bodyweight [bwt]) was administered by rapid intravenous (iv) injection to 10 horses. Typically, dosed horses showed a flehmen response and defecated within 60 secs. All horses showed substantial respiratory distress. Respiratory rates increased about 250 per cent and heart rates were approximately double that of resting values. All animals broke out in a sweat shortly after iv injection, but basal body temperature was not affected. These effects were transient, and the animals appeared normal within 30 mins of dosing. Treated horses were tested in a variable interval responding apparatus 30 mins after dosing and no residual stimulation or depressant effects of hordenine were apparent. Animals dosed orally with 2.0 mg/kg bwt of hordenine showed no changes in heart rate, respiratory rate, basal body temperature or behaviour. After iv injection of hordenine, (2.0 mg/kg bwt) plasma reached a maximum value of about 1.0 μg/ml, and declined thereafter in a biexponential fashion. Kinetics of plasma concentration satisfied the concept of a two compartment open system, with an α‐phase half‐life of about 3 mins, and a ß‐phase half‐life of about 35 mins. Total urinary concentrations of hordenine (free and conjugated) peaked at about 400 μg/ml, and then declined exponentially to background levels by 24 h after dosing. Oral administration of hordenine (2.0 mg/kg bwt) showed peak plasma levels of about 0.15 μg/ml 1 h after dosing, followed by a slow multi‐exponential decline in blood levels of the drug. Total urinary concentrations of hordenine (free and conjugated) peaked at about 200 μg/ml, remained at this level for about 8 h, and then declined to background levels. Plasma levels of hordenine were reflected by a kinetic model which assumed very slow absorption of hordenine from the gastrointestinal tract and no effect on behaviour, heart rate or respiratory rate were noted after oral administration. Because of the low plasma levels, it would appear to be particularly difficult to obtain a pharmacological effect of hordenine after oral administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.