We present a panel stochastic frontier model that handles the endogeneity problem. This model can treat the endogeneity of both frontier and inefficiency variables. We apply our method to examine the technical efficiency of Japanese cotton spinning industry. Our results indicate that market concentration is endogenous, and when its endogeneity is properly handled, it has a larger negative impact on the technical efficiency of cotton spinning plants. We find that the exogenous model substantially overestimates efficiency in concentrated markets.
We propose a fairly general individual effects stochastic frontier model, which allows both heterogeneity and inefficiency to change over time. Moreover, our model handles the endogeneity problems if either at least one of the regressors or one-sided error term is correlated with the two-sided error term. Our Monte Carlo experiments show that our estimator performs well. We employed our methodology to the US banking data and found a negative relationship between return on revenue and cost efficiency. Estimators ignoring time-varying heterogeneity or endogeneity did not perform well and gave very different estimates compared to our estimator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.