In this paper, we address the problem of service availability in mobile ad-hoc WANs. We present a s e c u r e m e c hanism to stimulate end users to keep their devices turned on, to refrain from overloading the network, and to thwart tampering aimed at converting the device into a \sel sh" one. Our solution is based on the application of a tamper resistant security module in each device and cryptographic protection of messages.
Abstract-In contrast with conventional networks, mobile ad hoc networks usually do not provide online access to trusted authorities or to centralized servers, and they exhibit frequent partitioning due to link and node failures and to node mobility. For these reasons, traditional security solutions that require online trusted authorities or certificate repositories are not well-suited for securing ad hoc networks. In this paper, we propose a fully self-organized public-key management system that allows users to generate their publicprivate key pairs, to issue certificates, and to perform authentication regardless of the network partitions and without any centralized services. Furthermore, our approach does not require any trusted authority, not even in the system initialization phase.
Significant developments took place over the past few years in the area of vehicular communication (VC) systems. Now, it is well-understood in the community that security and protection of private user information are a prerequisite for the deployment of the technology. This is so exactly because the benefits of VC systems, with the mission to enhance transportation safety and efficiency, are at stake. Without the integration of strong and practical security and privacy enhancing mechanisms, VC systems could be disrupted or disabled even by relatively unsophisticated attackers. We address this problem within the SeVeCom project, having developed a security architecture that provides a comprehensive and practical solution. We present our results in a set of two papers in this issue. In this first one, we analyze threats and types of adversaries, we identify security and privacy requirements, and present a spectrum of mechanisms to secure VC systems. We provide a solution that can be quickly adopted and deployed. Our progress towards implementation of our architecture, along with results on the performance of the secure VC system, are presented in the second paper. We conclude with an investigation, based on current results, of upcoming elements to be integrated in our secure VC architecture.
Abstract-In self-organizing ad hoc networks, all the networking functions rely on the contribution of the participants. As a basic example, nodes have to forward packets for each other in order to enable multihop communication. In recent years, incentive mechanisms have been proposed to give nodes incentive to cooperate, especially in packet forwarding. However, the need for these mechanisms was not formally justified. In this paper, we address the problem of whether cooperation can exist without incentive mechanisms. We propose a model based on game theory and graph theory to investigate equilibrium conditions of packet forwarding strategies. We prove theorems about the equilibrium conditions for both cooperative and noncooperative strategies. We perform simulations to estimate the probability that the conditions for a cooperative equilibrium hold in randomly generated network scenarios. As the problem is involved, we deliberately restrict ourselves to a static configuration. We conclude that in static ad hoc networkswhere the relationships between the nodes are likely to be stable-cooperation needs to be encouraged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.