The paper supports the view that ethylene plays a significant role in maintaining tomato pollen thermotolerance. Interfering with the ethylene signalling pathway or reducing ethylene levels and increased tomato pollen sensitivity to heat stress. On the other hand, increasing ethylene levels before heat-stress improved pollen quality.
The formation of mature and fertile pollen grains, taking place inside the anther, depends on supply of assimilates, in the form of sucrose, provided mainly by the leaves. Data is limited, however, with respect to the understanding of sucrose metabolism in microspores and the supporting tissues. The aims of the present work were to 1) follow the changes in total and relative concentrations of sucrose, glucose, fructose and starch in the stamen parts and microspores up until anthesis, 2) follow the activities of sucrose-metabolism-related enzymes, in the anther walls fraction and microspores of the crop plant tomato. Sucrose was found to be partially cleaved in the filament, decreasing by more than twofold in the anther wall layers and the locular fluid, and to accumulate in the mature pollen grains, constituting 80% of total soluble sugars. Thus, sucrose was both the starting sugar, supporting microspore development, and the main carbohydrate accumulated at the end of the pollen-development program. The major invertase found to be active in both the anther wall layers and in maturing microspores was cell-wall-bound invertase. High fructokinase 2 and sucrose phosphate synthase activities during pollen maturation coincided with sucrose accumulation. The potential importance of sucrose accumulation during pollen dehydration phase and germination is discussed
Tomato pollen grains have the capacity for ethylene production, possessing specific components of the ethylene-biosynthesis and -signaling pathways, being affected/responsive to high-temperature conditions. Exposure of plants to heat stress (HS) conditions reduces crop yield and quality, mainly due to sensitivity of pollen grains. Recently, it was demonstrated that ethylene, a gaseous plant hormone, plays a significant role in tomato pollen heat-tolerance. It is not clear, however, whether, or to what extent, pollen grains are dependent on the capacity of the surrounding anther tissues for ethylene synthesis and signaling, or can synthesize this hormone and possess an active signaling pathway. The aim of this work was (1) to investigate if isolated, maturing and mature, tomato pollen grains have the capacity for ethylene production, (2) to find out whether pollen grains possess an active ethylene-biosynthesis and -signaling pathway and characterize the respective tomato pollen components at the transcript level, (3) to look into the effect of short-term HS conditions. Results from accumulation studies showed that pollen, anthers, and flowers produced ethylene and HS affected differentially ethylene production by (rehydrated) mature pollen, compared to anthers and flowers, causing elevated ethylene levels. Furthermore, several ethylene synthesis genes were expressed, with SlACS3 and SlACS11 standing out as highly HS-induced genes of the pollen ethylene biosynthesis pathway. Specific components of the ethylene-signaling pathway as well as several ethylene-responsive factors were expressed in pollen, with SlETR3 (ethylene receptor; named also NR, for never ripe) and SlCTR2 (constitutive triple response2) being HS responsive. This work shows that tomato pollen grains have the capacity for ethylene production, possessing active ethylene-biosynthesis and -signaling pathways, highlighting specific pollen components that serve as a valuable resource for future research on the role of ethylene in pollen thermotolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.