Recent explorations of the morphology of retinal neurones, combined with neurophysiological recordings have made it possible to link specific anatomical types with particular physiological classes. At the same time, the relatively complete anatomical mapping of the retina has revealed some bias in the sampling of neurones by electrophysiological techniques.
A previously undocumented hypokalaemic condition with a cyclical nature, comprising acute bouts of polymyopathy followed by spontaneous recoveries, is described in the cat. Cats being fed a high protein vegetarian diet developed recurrent episodes of polymyopathy, characterised by ventroflexion of the head and neck, stiff forelimb gait, lateral head-resting and generalised muscle weakness. Plasma potassium concentrations (mean +/- standard deviation) were reduced from 3.28 +/- 0.33 mmol/l at the beginning of the experiment to 2.45 +/- 0.24 mmol/l during bouts of myopathy. This hypokalaemia was associated with increased creatine kinase activities indicative of muscle damage, and decreased urinary potassium concentrations, and was caused by insufficient dietary potassium. Cats that received the same diet supplemented with potassium did not develop hypokalaemic polymyopathy. Spontaneous recoveries of affected cats were not associated consistently with increases in plasma potassium concentrations. Plasma taurine concentrations decreased and glutamic acid increased markedly in all cats fed the experimental diet. There was no evidence of thiamin deficiency associated with the high glutamic acid intake. Veterinarians should be aware that hypokalaemic cats, and in particular those on potassium-deficient diets, may show cyclical disease with episodes of polymyopathy recurring after periods of spontaneous clinical recovery. This condition in cats may be a useful animal model for familial hypokalaemic periodic paralysis in humans.
The axonal conduction latency of brisk-sustained and brisk-transient cat retinal ganglion cells increases with proximity to the area centralis. The trend is gradual with considerable local scatter of latencies, and is similar for cells with crossed and uncrossed axons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.