Theoretical analysis of the gain and threshold current of a semiconductor quantum dot (QD) laser is given which takes account of the line broadening caused by fluctuations in quantum dot sizes. The following processes are taken into consideration together with the main process of radiative recombination of carriers in QDs: band-to-band radiative recombination of carriers in the waveguide region, carrier capture into QDs and thermally excited escape from QDs, photoexcitation of carriers from QDs to continuous-spectrum states. For an arbitrary QD size distribution, expressions for the threshold current density as a function of the root mean square of relative QD size fluctuations, total losses in the waveguide region, surface density of QDs and thickness of the waveguide region have been obtained in an explicit form. The minimum threshold current density and optimum parameters of the structure (surface density of QDs and thickness of the waveguide region) are calculated as universal functions of the main dimensionless parameter of the theory developed. This parameter is the ratio of the stimulated transition rate in QDs at the lasing threshold to the spontaneous transition rate in the waveguide region at the transparency threshold. Theoretical estimations presented in the paper confirm the possibility of a significant reduction of the threshold currents of QD lasers as compared with the conventional quantum well lasers.
Abstract-We propose a genuinely temperature-insensitive quantum dot (QD) laser. Our approach is based on direct injection of carriers into the QDs, resulting in a strong depletion of minority carriers in the regions outside the QDs. Recombination in these regions, which is the dominant source of the temperature dependence, is thereby suppressed, raising the characteristic temperature 0 above 1500 K. Still further enhancement of 0 results from the resonant nature of tunneling injection, which reduces the inhomogeneous line broadening by selectively cutting off the nonlasing QDs.
Abstract-We discuss in detail a new mechanism of nonlinearity of the light-current characteristic (LCC) in heterostructure lasers with reduced-dimensionality active regions, such as quantum wells (QWs), quantum wires (QWRs), and quantum dots (QDs). It arises from: 1) noninstantaneous carrier capture into the quantum-confined active region and 2) nonlinear (in the carrier density) recombination rate outside the active region. Because of 1), the carrier density outside the active region rises with injection current, even above threshold, and because of 2), the useful fraction of current (that ends up as output light) decreases. We derive a universal closed-form expression for the internal differential quantum efficiency int that holds true for QD, QWR, and QW lasers. This expression directly relates the power and threshold characteristics. The key parameter, controlling int and limiting both the output power and the LCC linearity, is the ratio of the threshold values of the recombination current outside the active region to the carrier capture current into the active region. Analysis of the LCC shape is shown to provide a method for revealing the dominant recombination channel outside the active region. A critical dependence of the power characteristics on the laser structure parameters is revealed. While the new mechanism and our formal expressions describing it are universal, we illustrate it by detailed exemplary calculations specific to QD lasers. These calculations suggest a clear path for improvement of their power characteristics. In properly optimized QD lasers, the LCC is linear and the internal quantum efficiency is close to unity up to very high injection-current densities (15 kA/cm 2 ). Output powers in excess of 10 W at int higher than 95% are shown to be attainable in broad-area devices. Our results indicate that QD lasers may possess an advantage for high-power applications.Index Terms-Quantum dots (QDs), quantum wells (QWs), quantum wires (QWRs), semiconductor heterojunctions, semiconductor lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.