Oral squamous cell carcinoma (OSCC) represents 90% of oral malignant neoplasms. The search for specific biomarkers for OSCC is a very active field of research contributing to establishing early diagnostic methods and unraveling underlying pathogenic mechanisms. In this work we investigated the salivary metabolites and the metabolic pathways of OSCC aiming find possible biomarkers. Salivary metabolites samples from 27 OSCC patients and 41 control individuals were compared through a gas chromatography coupled to a mass spectrometer (GC-MS) technique. Our results allowed identification of pathways of the malate-aspartate shuttle, the beta-alanine metabolism, and the Warburg effect. The possible salivary biomarkers were identified using the area under receiver-operating curve (AUC) criterion. Twenty-four metabolites were identified with AUC > 0.8. Using the threshold of AUC = 0.9 we find malic acid, maltose, protocatechuic acid, lactose, 2-ketoadipic, and catechol metabolites expressed. We notice that this is the first report of salivary metabolome in South American oral cancer patients, to the best of our knowledge. Our findings regarding these metabolic changes are important in discovering salivary biomarkers of OSCC patients. However, additional work needs to be performed considering larger populations to validate our results.
In vitro evaluation of the microhardness of bovine enamel exposed to acid solutions after bleaching Abstract: Acid erosion is a superficial loss of enamel caused by chemical processes that do not involve bacteria. Intrinsic and extrinsic factors, such as the presence of acid substances in the oral cavity, may cause a pH reduction, thus potentially increasing acid erosion. The aim of this study was to evaluate the microhardness of bleached and unbleached bovine enamel after immersion in a soda beverage, artificial powder juice and hydrochloric acid. The results obtained for the variables of exposure time, acid solution and substrate condition (bleached or unbleached enamel) were statistically analyzed by the ANOVA and Tukey tests. It was concluded that a decrease in microhardness renders dental structures more susceptible to erosion and mineral loss, and that teeth left unbleached show higher values of microhardness compared to bleached teeth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.