In marker‐assisted recurrent selection (MARS), a subset of molecular markers significantly associated with target traits of interest are used to predict the breeding value of individual plants, followed by rapid recombination and selfing. This study estimated genetic gains in grain yield (GY) using MARS in 10 biparental tropical maize (Zea may L.) populations. In each population, 148 to 184 F2:3 (defined as C0) progenies were derived, crossed with a single‐cross tester, and evaluated under water‐stressed (WS) and well‐watered (WW) environments in sub‐Saharan Africa (SSA). The C0 populations were genotyped with 190 to 225 single‐nucleotide polymorphism (SNP) markers. A selection index based on marker data and phenotypic data was used for selecting the best C0 families for recombination. Individual plants from selected families were genotyped using 55 to 87 SNPs tagging specific quantitative trait loci (QTL), and the best individuals from each cycle were either intercrossed (to form C1) or selfed (to form C1S1 and C1S2). A genetic gain study was conducted using test crosses of lines from the different cycles F1 and founder parents. Test crosses, along with five commercial hybrid checks were evaluated under four WS and four WW environments. The overall gain for GY using MARS across the 10 populations was 105 kg ha−1 yr−1 under WW and 51 kg ha−1 yr−1 under WS. Across WW environments, GY of C1S2–derived hybrids were 8.7, 5.9, and 16.2% significantly greater than those of C0, founder parents, and commercial checks, respectively. Results demonstrate the potential of MARS for increasing genetic gain under both drought and optimum environments in SSA.
General combining ability (GCA), specific combining ability (SCA), and reciprocal cross effects information facilitate efficient utilization of inbred lines in a breeding program. A diallel analysis of nine quality protein maize (Zea mays L.) inbred lines was evaluated over seven environments in Zimbabwe. Hybrid × environment interaction was significant for all the traits except for tryptophan content and Quality Index. Thus, phenotyping for tryptophan content and Quality Index can be done using a few environments. There was preponderance of GCA effects for tryptophan content, protein content, kernel endosperm modification, and anthesis dates, while SCA effects were both significant and dominant for grain yield, and were also significant for Quality Index and anthesis dates. Reciprocal effects were significant for Quality Index, tryptophan, and anthesis dates, but on the average they accounted for <13% of the variation among hybrids; hence, they were less important. The cross CML181f × CML176 between heterotic group B inbreds was the highest yielding. Inbred CZL03016 exhibited the most desirable GCA effects for kernel modification, while CML264Q showed the best GCA effects for Quality Index, tryptophan, and protein content. CML264Q would be crucial for use as a donor in breeding for these traits in subtropical maize programs.
Combinatorial insect attacks on maize leaves, stems, and kernels cause significant yield losses and mycotoxin contaminations. Several small effect quantitative trait loci (QTL) control maize resistance to stem borers and storage pests and are correlated with secondary metabolites. However, efficient use of QTL in molecular breeding requires a synthesis of the available resistance information. In this study, separate meta-analyses of QTL of maize response to stem borers and storage pests feeding on leaves, stems, and kernels along with maize cell wall constituents discovered in these tissues generated 24 leaf (LIR), 42 stem (SIR), and 20 kernel (KIR) insect resistance meta-QTL (MQTL) of a diverse genetic and geographical background. Most of these MQTL involved resistance to several insect species, therefore, generating a significant interest for multiple-insect resistance breeding. Some of the LIR MQTL such as LIR4, 17, and 22 involve resistance to European corn borer, sugarcane borer, and southwestern corn borer. Eleven out of the 42 SIR MQTL related to resistance to European corn borer and Mediterranean corn borer. There KIR MQTL, KIR3, 15, and 16 combined resistance to kernel damage by the maize weevil and the Mediterranean corn borer and could be used in breeding to reduce insect-related post-harvest grain yield loss and field to storage mycotoxin contamination. This meta-analysis corroborates the significant role played by cell wall constituents in maize resistance to insect since the majority of the MQTL contain QTL for members of the hydroxycinnamates group such as p-coumaric acid, ferulic acid, and other diferulates and derivates, and fiber components such as acid detergent fiber, neutral detergent fiber, and lignin. Stem insect resistance MQTL display several co-localization between fiber and hydroxycinnamate components corroborating the hypothesis of cross-linking between these components that provide mechanical resistance to insect attacks. Our results highlight the existence of combined-insect resistance genomic regions in maize and set the basis of multiple-pests resistance breeding.
Crop varieties should fulfill multiple requirements, including agronomic performance and product quality. Variety evaluations depend on data generated from field trials and sensory analyses, performed with different levels of participation from farmers and consumers. Such multi-faceted variety evaluation is expensive and time-consuming; hence, any use of these data should be optimized. Data synthesis can help to take advantage of existing and new data, combining data from different sources and combining it with expert knowledge to produce new information and understanding that supports decision-making. Data synthesis for crop variety evaluation can partly build on extant experiences and methods, but it also requires methodological innovation. We review the elements required to achieve data synthesis for crop variety evaluation, including (1) data types required for crop variety evaluation, (2) main challenges in data management and integration, (3) main global initiatives aiming to solve those challenges, (4) current statistical approaches to combine data for crop variety evaluation and (5) existing data synthesis methods used in evaluation of varieties to combine different datasets from multiple data sources. We conclude that currently available methods have the potential to overcome existing barriers to data synthesis and could set in motion a virtuous cycle that will encourage researchers to share data and collaborate on data-driven research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.