Customization of products or services is a strategy that the business sector has embraced to build a better relationship with the customers to cater to their individual needs and thus providing them a fulfilling experience. This whole process is known as customer relationship management (CRM). In this context, we extensively surveyed 138 papers published between 1996 and 2021 in the area of analytical CRM. Although this study consisted of papers from different business sectors, a fair share of focus was directed to the telecommunication industry and generalized CRM techniques usages. Different science and engineering-based data repositories were studied to ascertain significant studies published in scientific journals, conferences, and articles. The research works on CRM were considered and separated into IT and non-IT-based techniques to study the methods used in different business sectors. The main target behind implementing CRM is for the better revenue growth of the company. Different IT and non-IT-based techniques are used in the analytical CRM area to achieve this target, and researchers have been actively involved in this domain. The purpose of the research was to show the impact of IT-based techniques in the business world. A detailed future course of research in this area was discussed.
Being able to predict the churn rate is the key to success for the telecommunication industry. It is also important for the telecommunication industry to obtain a high profit. Thus, the challenge is to predict the churn percentage of customers with higher accuracy without comprising the profit. In this study, various types of learning strategies are investigated to address this challenge and build a churn predication model. Ensemble learning techniques (Adaboost, random forest (RF), extreme randomized tree (ERT), xgboost (XGB), gradient boosting (GBM), and bagging and stacking), traditional classification techniques (logistic regression (LR), decision tree (DT), and k-nearest neighbor (kNN), and artificial neural network (ANN)), and the deep learning convolutional neural network (CNN) technique have been tested to select the best model for building a customer churn prediction model. The evaluation of the proposed models was conducted using two pubic datasets: Southeast Asian telecom industry, and American telecom market. On both of the datasets, CNN and ANN returned better results than the other techniques. The accuracy obtained on the first dataset using CNN was 99% and using ANN was 98%, and on the second dataset it was 98% and 99%, respectively.
In the telecommunication industry, being able to predict customers' behavioral pattern to successfully design and recommend a suitable tariff plan is the ultimate target. The behavioral pattern has a vital connection with the customers' demographic background. Different researches have been done based on hypothesis testing, regression analysis, and conjoint analysis to determine the interdependencies among them and the effects on the customers' behavioral needs. This has presented us with ample scope for research using numerous classification-based techniques. This work proposes a model to predict customer's behavioral pattern by using their demographic data. This model was built after investigating various types of classification-based machine learning techniques including the traditional ones like decision tree, k-nearest neighbor, logistic regression, and artificial neural networks along with some ensemble techniques such as random forest, adaboost, gradient boosting machine, extreme gradient boosting, bagging, and stacking. They are applied to a dataset collected using a questionnaire in India. Among the traditional classifiers, decision tree gave the best result of 81% accuracy and random forest showed the best result among the ensemble learning techniques with an accuracy of 83%. The proposed model has shown a very positive outcome in predicting the customers' behavioral pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.