Recommendation systems have become extremely common in recent years. It helps the customer to discover information and settle on choices where they do not have the required learning to judge a specific item. It can be utilized as a part of different diverse approaches to encourage its customer with effective information sorting. It is a software tool and techniques that provide suggestion based on the customer's taste to discover new appropriate thing for them by filtering personalized information based on the user's preferences from a large volume of information. Users taste and preferences should be constructed accurately in order to provide most relevant suggestions. This survey paper compare's and details the various type of recommender system and popular recommendation algorithms and its uses.
Clustering high-dimensional data has been a major challenge due to the inherent sparsity of the points. Most existing clustering algorithms become substantially inefficient if the required similarity measure is computed between data points in the fulldimensional space. In this paper, we have presented a robust multi objective subspace clustering (MOSCL) algorithm for the challenging problem of high-dimensional clustering. The first phase of MOSCL performs subspace relevance analysis by detecting dense and sparse regions with their locations in data set. After detection of dense regions it eliminates outliers. MOSCL discovers subspaces in dense regions of data set and produces subspace clusters. In thorough experiments on synthetic and real-world data sets, we demonstrate that MOSCL for subspace clustering is superior to PROCLUS clustering algorithm. Additionally we investigate the effects of first phase for detecting dense regions on the results of subspace clustering. Our results indicate that removing outliers improves the accuracy of subspace clustering. The clustering results are validated by clustering error (CE) distance on various data sets. MOSCL can discover the clusters in all subspaces with high quality, and the efficiency of MOSCL outperforms PROCLUS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.