Bright light can suppress nighttime melatonin production in humans, but ordinary indoor light does not have this effect. This finding suggested that bright light may have other chronobiologic effects in humans as well. Eight patients who regularly became depressed in the winter (as day length shortens) significantly improved after 1 week of exposure to bright light in the morning (but not after 1 week of bright light in the evening). The antidepressant response to morning light was accompanied by an advance (shift to an earlier time) in the onset of nighttime melatonin production. These results suggest that timing may be critical for the antidepressant effects of bright light.
The onset of melatonin secretion under dim light conditions (DLMO) and the circadian temperature rhythm during a constant routine were assessed in 6 female controls and 6 female patients with winter depression (seasonal affective disorder, SAD) before and after bright light treatment. After sleep was standardized for 6 days, the subjects were sleep-deprived and at bedrest for 27 h while core temperature and evening melatonin levels were determined. The DLMO of the SAD patients was phase-delayed compared with controls (2310 vs 2138); with bright light treatment, the DLMO advanced (2310 to 2135). The minimum of the fitted rectal temperature rhythm was phase-delayed in the SAD group compared with the controls (0542 vs 0316); with bright light treatment, the minimum advanced (0542 vs 0336).
The case of a 40-year-old sighted woman with free-running sleep-wake and melatonin rhythms is presented. The subject was studied for 102 days. During the pre-treatment period, both the sleep-wake and melatonin rhythms had a period of 25.1 hr, similar to the average period of humans living in temporal isolation. Treatment consisted of bright artificial light exposure (2500 lx Vita-Lite) for 2 hr each day upon awakening. Clock time of light exposure was held constant for 6 days and then slowly advanced until the subject was arising at her desired time of day. The subject continued the light treatment at home and was able to live on a 24-hr day for the 30-day follow-up study. While other factors may be operating in this situation, it is possible that the light treatment caused the stabilization of the free-running rhythms, advancement to a normal phase and entrainment to the 24-hr day. We suspect that the tendency to free-run was related to sleep onsets that were abnormally delayed relative to the circadian phase response curve for light. By scheduling a 2-hr pulse of bright light each morning, this tendency to delay would be counteracted by light-induced advances, resulting in normal entrainment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.