The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
The exponentially increasing amount of information accumulated from past to current engineering projects has created an environment where repurposing existing data to support new projects is paramount to sustainable success. Strategic planning and early design decisions, specifically, occur in decision-making environments that require information support capabilities that lie outside of traditional engineering analyses. In order to advance towards a more complete planning environment, a pragmatic methodology has been developed for modern aerospace data and information collection, categorisation, and utilisation with a focus on current efforts in hypersonic vehicle research and development. The main thrust has been to provide insights into financial and technical trends that support objective programmatic and planning decision-making. The end-product is a suite of graphical decision-making interfaces, linked through a unified hypersonic database. The graphical interfaces are capable of highlighting the key project drivers along varying levels of categorisation and refinement. Aided by these newly developed data and information support interfaces covering past and present hypersonic efforts, the planner's forecasting assessment of present and future hypersonic research and development efforts is pragmatically enriched towards a more complete managerial program-planning framework.
In an effort to quantify the feasibility of candidate space architectures for astronauts servicing Geosynchronous Earth Orbit (GEO) satellites, a conceptual assessment of architectureconcept and operations-technology combinations has been performed. The focus has been the development of a system with the capability to transfer payload to and from geostationary orbit. Two primary concepts of operations have been selected: (a) Direct insertion/re-entry (Concept of Operations 1 -CONOP 1); (b) Launch to low-earth orbit at Kennedy Space Center inclination angle with an orbital transfer to/from geostationary orbit (Concept of Operations 2 -CONOP 2). The study concludes that a capsule and de-orbit propulsion module system sized for the geostationary satellite servicing mission is feasible for a direct insertion/re-entry concept of operation CONOP 1. Vehicles sized for CONOP 2 show overall total mass savings when utilising the aero-assisted orbital transfer vehicle de-orbit propulsion module options compared to the pure propulsive baseline cases. Overall, the consideration of technical, operational and cost factors determine if either the aero-assisted orbital transfer vehicle concepts or the re-usable/expendable ascent/de-orbit propulsion modules is the preferred option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.