Abstract:In the present work, the photocatalytic performance of P25TiO 2 was investigated by means of the degradation of aspirin, while the reaction system was systematically optimized by central composite design (CCD) based on the response surface methodology (RSM). In addition, three variables of initial pH value, initial aspirin concentration and P25 concentration were selected to assess the dependence of degradation efficiencies of aspirin. Meanwhile, a predicted model of degradation efficiency was estimated and checked using analysis of variance (ANOVA). The results indicated that the PC removal of aspirin by P25 was significantly influenced by all these variables in descending order as follows: P25 concentration > initial aspirin concentration > initial pH value. Moreover, the parameters were optimized by the CCD method. Under the conditions of an initial pH value of 5, initial aspirin concentration of 10 mg/L and P25 concentration of 50 mg/L, the degradation efficiency of aspirin was 98.9%with 60 min of Xenon lamp irradiation. Besides, based on the liquid chromatography-mass spectrometry measurements, two main PC degradation pathways of aspirin by TiO 2 were deduced and the tentative degradation mechanism was also proposed.
In this study, a nickel ferrite (NiFe2O4) system was constructed to purify a phenol solution in water. During the process, the influences of several critical operating parameters including the NiFe2O4 amount, PS dosage, MW power, initial pH value, and different natural water anions were systematically studied. The results indicated that the constructed system performed excellently regarding the removal efficiency (97.74%) of phenol within 30 min. Meanwhile, the influence of co-existing anions such as Cl−, NO3−, H2PO4−, and HCO3− was also studied, which displayed an inhibiting action on phenol degradation, while HA facilitated it. To explore the reaction mechanism of this system, major free radical quenching experiments were conducted, and it was confirmed that both SO4•− and HO• were primary radicals. Moreover, stability experiments confirmed the apt stability of the NiFe2O4 system. Besides, the mineralization and toxicity analysis performed during phenol degradation also confirmed the superiority of the as-constructed system. Furthermore, the possible degradation mechanism of phenol was proposed. Hence, this system could be applied in advanced wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.