In this study, a nickel ferrite (NiFe2O4) system was constructed to purify a phenol solution in water. During the process, the influences of several critical operating parameters including the NiFe2O4 amount, PS dosage, MW power, initial pH value, and different natural water anions were systematically studied. The results indicated that the constructed system performed excellently regarding the removal efficiency (97.74%) of phenol within 30 min. Meanwhile, the influence of co-existing anions such as Cl−, NO3−, H2PO4−, and HCO3− was also studied, which displayed an inhibiting action on phenol degradation, while HA facilitated it. To explore the reaction mechanism of this system, major free radical quenching experiments were conducted, and it was confirmed that both SO4•− and HO• were primary radicals. Moreover, stability experiments confirmed the apt stability of the NiFe2O4 system. Besides, the mineralization and toxicity analysis performed during phenol degradation also confirmed the superiority of the as-constructed system. Furthermore, the possible degradation mechanism of phenol was proposed. Hence, this system could be applied in advanced wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.