The orchid Erycina pusilla has a short life cycle and relatively low chromosome number, making it a potential model plant for orchid functional genomics. To that end, small RNAs (sRNAs) from different developmental stages of different organs were sequenced. In this miRNA mix, 33 annotated miRNA families and 110 putative miRNA-targeted transcripts were identified in E. pusilla. Fifteen E. pusilla miRNA target genes were found to be similar to those in other species. There were putative novel miRNAs identified by 3 different strategies. The genomic sequences of the four miRNAs that were identified using rice genome as the reference can form the stem loop structure. The t0000354 miRNA, identified using rice genome sequences and a Phalaenopsis study, had a high read count. The target gene of this miRNA is MADS (unigene30603), which belongs to the AP3-PI subfamily. The most abundant miRNA was E. pusilla miR156 (epu-miR156), orthologs of which work to maintain the vegetative phase by repressing the expression of the SQUAMOSA promoter-binding-like (SPL) transcription factors. Fifteen genes in the E. pusilla SPL (EpSPL) family were identified, nine of which contained the putative epu-miR156 target site. Target genes of epu-miR172, also a key regulator of developmental changes in the APETALA2 (EpAP2) family, were identified. Experiments using 5'RLM-RACE demonstrated that the genes EpSPL1, 2, 3, 4, 7, 9, 10, 14 and EpAP2-9, -10, -11 were regulated by epu-miR156 and epu-miR172, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.