We consider a 5-dimensional scalar-tensor theory which is a direct generalization of the original 4-dimensional Brans-Dicke theory to 5-dimensions. By assuming that there is a hypersurface-orthogonal spacelike Killing vector field in the underlying 5-dimensional spacetime, the theory is reduced to a 4-dimensional theory where the 4-metric is coupled with two scalar fields. The cosmological implication of this reduced theory is then studied in the Robertson-Walker model. It turns out that the two scalar fields may account naturally for the present accelerated expansion of our universe. The observational restriction of the reduced cosmological model is also analyzed. PACS number(s): 04.50.+h, 98.80.Es
In this perspective, we outline that a space borne gravitational wave detector network combining LISA and Taiji can be used to measure the Hubble constant with an uncertainty less than 0.5% in ten years, compared with the network of the ground based gravitational wave detectors which can measure the Hubble constant within a 2% uncertainty in the next five years by the standard siren method. Taiji is a Chinese space borne gravitational wave detection mission planned for launch in the early 2030 s. The pilot satellite mission Taiji-1 has been launched in August 2019 to verify the feasibility of Taiji. The results of a few technologies tested on Taiji-1 are presented in this paper.
In the centenary year of Einstein's General Theory of Relativity, this paper reviews the current status of gravitational wave astronomy across a spectrum which stretches from attohertz to kilohertz frequencies. Sect. 1 of this paper reviews the historical development of gravitational wave astronomy from Einstein's first prediction to our current understanding the spectrum. It is shown that detection of signals in the audio frequency spectrum can be expected very soon, and that a north-south pair of next generation detectors would provide large scientific benefits. Sect. 2 reviews the theory of gravitational waves and the principles of detection using laser interferometry. The state of the art Advanced LIGO detectors are then described. These detectors have a high chance of detecting the first events in the near future. Sect. 3 reviews the KAGRA detector currently under development in Japan, which will be the first laser interferometer detector to use cryogenic test masses. Sect. 4 of this paper reviews gravitational wave detection in the nanohertz frequency band using the technique of pulsar timing. Sect. 5 reviews the status of gravitational wave detection in the attohertz frequency band, detectable in the polarisation of the cosmic microwave background, and discusses the prospects for detection of primordial waves from the big bang. The techniques described in sects. 1-5 have already placed significant limits on the strength of gravitational wave sources. Sects. 6 and 7 review ambitious plans for future space based gravitational wave detectors in the millihertz frequency band. Sect. 6 presents a roadmap for development of space based gravitational wave detectors by China while sect. 7 discusses a key enabling technology for space interferometry known as time delay interferometry. gravitational waves, ground based detectors, pulsar timing, spaced based detectors, CMB PACS number(s): 04.80. Nn, 07.20.Mc,
In the covariant cosmological perturbation theory, a 1+3 decomposition ensures that all variables in the frame-independent equations are covariant, gauge-invariant and have clear physical interpretations. We develop this formalism in the case of Brans-Dicke gravity, and apply this method to the calculation of cosmic microwave background (CMB) anisotropy and large scale structures (LSS). We modify the publicly available Boltzmann code CAMB to calculate numerically the evolution of the background and adiabatic perturbations, and obtain the temperature and polarization spectra of the Brans-Dicke theory for both scalar and tensor mode, the tensor mode result for the Brans-Dicke gravity are obtained numerically for the first time. We first present our theoretical formalism in detail, then explicitly describe the techniques used in modifying the CAMB code. These techniques are also very useful to other gravity models. Next we compare the CMB and LSS spectra in Brans-Dicke theory with those in the standard general relativity theory. At last, we investigate the ISW effect and the CMB lensing effect in the Brans-Dicke theory. Constraints on Brans-Dicke model with current observational data is presented in a companion paper [1](paper II).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.