The analysis of the theory and realization on reducing EMI with jitter frequency modulation technology is presented. EMI tests and comparison are accomplished respectively on a 60W switch mode power supply controlled by Top249 integrated with frequency jittering function and a 2KW high-power switch mode power supply controlled by TL494. The results prove that this technique has a remarkable effect on decrease EMI noise level.
<abstract><p>The population of biological species in the ecosystem is known sensitive to the periodic fluctuations of seasonal change, food resources and climatic conditions. Research in the ecological management discipline conventionally models the behavior of such dynamic systems through specific impulsive response functions, but the results of such research are applicable only when the environments conform exactly to the conditions as defined by the specific response functions that have been implemented for specific scenarios. This means that the application of previous work may be somewhat limited. Moreover, the intra and inter competitions among species have been seldom studied for modelling the prey-predator ecosystem. To fill in the gaps this paper models the delicate balance of two-prey and one-predator system by addressing three main areas of: ⅰ) instead of using the specific impulse response this work models the ecosystem through a more general response function; ⅱ) to include the effects due to the competition between species and ⅲ) the system is subjected to the influences of seasonal factors. The seasonal factor has been implemented here in terms of periodic functions to represent the growth rates of predators. The sufficient condition for the local and global asymptotic stability of the prey-free periodic solution and the permanence of the system have been subsequently obtained by using the Comparison techniques and the Floquet theorems. Finally, the correctness of developed theories is verified by numerical simulation, and the corresponding biological explanation is given.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.