We report plasma-enhanced chemical vapor deposition (PECVD) hydrogenated nano-crystalline silicon (nc-Si:H) thin films. In particular, the effect of hydrogen dilution ratio (R = H 2 /SiH 4) on structural and optical evolutions of the deposited nc-Si:H films were systematically investigated including Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and low angle X-ray diffraction spectroscopy (XRD). Measurement results revealed that the nc-Si:H structural evolution, primarily the transition of nano-crystallization from the amorphous state to the nanocrystalline state, can be carefully induced by the adjustment of hydrogen dilution ratio (R). In addition, an in situ plasma diagnostic tool of optical emission spectroscopy (OES) was used to further characterize the crystallization rate index (H α */SiH*) that increases when hydrogen dilution ratio (R) rises, whereas the deposition rate decreases. Another in situ plasma diagnostic tool of quadruple mass spectrometry (QMS) also confirmed that the "optimal" range of hydrogen dilution ratio (R = 30-40) can yield nano-crystalline silicon (n-Si:H) growth due to the depletion of higher silane radicals. A good correlation between the plasma characteristics by in situ OES/QMS and the film characteristics by XRD, Raman and FTIR, for the transition of a-Si:H to nc-Si:H film from the hydrogen dilution ratio, was obtained.
In this paper, we introduce a novel concept of liquid-actuated aspheric lens (LAL) with a built-in aspheric polydimethylsiloxane lens (APL) to enable the design of compact optical systems with varifocal microscopic imaging. The varifocal lens module consists of a sandwiched structures such as 3d printed syringe pump functionally serves as liquid controller. Other key components include two acrylic cylinders, a rigid separator, a APL/membrane composite (APLMC) embedded PDMS membrane. In functional operation, the fluidic controller was driven to control the pressure difference and ALPMC deformation. The focal length can be changed through the pressure difference. This is achieved by the adjustment of volume change of injected liquid such that a widely tunable focal length. The proposed LAL can transform to 3 modes: microscopic mode (APLMC only), convex-concave mode and biconcave mode. It is noticeable that LAL in the operation of microscopic mode is tunable in focus via the actuation of APLMC (focal length is from 4.3 to 2.3 mm and magnification 50X) and can rival the images quality of commercial microscopes. A new lab-on-phone device is economically feasible and functionally versatile to offer a great potential in the point of care applications.
In this paper, the correlation of impedance matching and optical emission spectroscopy during plasma-enhanced chemical vapor deposition (PECVD) was systematically investigated in SiH4 plasma diluted by various hydrogen dilution ratios. At the onset of nanocrystallinity in SiH4− depleted plasma condition, the SiH+ radical reached a threshold value as the dominant radical, such that a-Si to nc-Si transition was obtained. Furthermore, the experimental data of impedance analysis showed that matching behavior can be greatly influenced by variable plasma parameters due to the change of various hydrogen dilution ratios, which is consistent with the recorded optical emission spectra (OES) of Hα* radicals. Quadruple mass spectrometry (QMS) and transmission electron microscopy (TEM) were employed as associated diagnostic and characterization tools to confirm the phase transformation and existence of silicon nanocrystals.
Phase transformation of hydrogenated nanocrystalline silicon (nc-Si:H) films was essential in the solar cells industry. Therefore, the plasma chemistry monitoring of in-situ diagnostics optical emission spectroscopy (OES) of plasma-enhanced chemical vapour deposition (PECVD) is deemed crucial for investigating the phase transformation. The proposed PC2-OES algorithm can be used to monitor the PECVD process health condition of the crystallisation rate at different hydrogen dilution ratios. Principal component analysis (PCA) was performed to distinguish the crucial role of nc-Si:H emission characteristics of plasma chemistry and the resultant crystallisation rate. Measurement results revealed that OES spectra characterisation confirmed that the crystallisation rate index (Hα*/SiH*) was highly correlated to hydrogen dilution ratio (R) and phase transformation of nc-Si:H film. The proposed PCA-based evaluation method will provide valuable information to reflect consistently the crystallisation rate of deposited films with different hydrogen dilution ratio and possibly other processing parameters of mass flow rate and applied power density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.