Purpose: Functional loss of BRCA1 is associated with poorly differentiated and metastatic breast cancers that are enriched with cancer stem cells (CSCs). CSCs can be generated from carcinoma cells through an epithelial-mesenchymal transition (EMT) program. We and others have previously demonstrated that BRCA1 suppresses EMT and regulates the expression of multiple EMT-related transcription factors. However, the downstream mediators of BRCA1 function in EMT suppression remain elusive. Methods: Depletion of BRCA1 or GATA3 activates p18 I NK4C , a cell cycle inhibitor which inhibits mammary epithelial cell proliferation. We have therefore created genetically engineered mice with Brca1 or Gata3 loss in addition to deletion of p18 I NK4C , to rescue proliferative defects caused by deficiency of Brca1 or Gata3. By using these mutant mice along with human BRCA1 deficient as well as proficient breast cancer tissues and cells, we investigated and compared the role of Brca1 and Gata3 loss in the activation of EMT in breast cancers. Results: We discovered that BRCA1 and GATA3 expressions were positively correlated in human breast cancer. Depletion of BRCA1 stimulated methylation of GATA3 promoter thereby repressing GATA3 transcription. We developed Brca1 and Gata3 deficient mouse system. We found that Gata3 deficiency in mice induced poorly-differentiated mammary tumors with the activation of EMT and promoted tumor initiating and metastatic potential. Gata3 deficient mammary tumors phenocopied Brca1 deficient tumors in the induction of EMT under the same genetic background. Reconstitution of Gata3 in Brca1-deficient tumor cells activated mesenchymal-epithelial transition, suppressing tumor initiation and metastasis. Conclusions: Our finding, for the first time, demonstrates that GATA3 functions downstream of BRCA1 to suppress EMT in controlling mammary tumorigenesis and metastasis.
Cancer prognosis is poor for patients with blood-borne metastasis. Platelets are known to assist cancer cells in transmigrating through the endothelium, but ligands for the platelet-mediated cancer metastasis remain poorly defined. von Willebrand factor (vWF) is a major platelet ligand that has been widely used as a biomarker in cancer and associated inflammation. However, its functional role in cancer growth and metastasis is largely unknown. Here we report that gastric cancer cells from patients and cells from two well-established gastric cancer lines express vWF and secrete it into the circulation, upon which it rapidly becomes cell-bound to mediate cancer-cell aggregation and interaction with platelets and endothelial cells. The vWF-mediated homotypic and heterotypic cell–cell interactions promote the pulmonary graft of vWF-overexpressing gastric cancer BGC823 cells in a mouse model. The metastasis-promoting activity of vWF was blocked by antibodies against vWF and its platelet receptor GP Ibα. It was also reduced by an inhibitory siRNA that suppresses vWF expression. These findings demonstrate a causal role of cancer-cell-derived vWF in mediating gastric cancer metastasis and identify vWF as a new therapeutic target.
Carnitine palmitoyltransferase I (CPT I) is a key enzyme involved in the regulation of lipid metabolism and fatty acid β-oxidation. To understand the transcriptional mechanism of CPT Iα1b and CPT Iα2a genes, we cloned the 2695-bp and 2631-bp regions of CPT Iα1b and CPT Iα2a promoters of grass carp (Ctenopharyngodon idella), respectively, and explored the structure and functional characteristics of these promoters. CPT Iα1b had two transcription start sites (TSSs), while CPT Iα2a had only one TSS. DNase I foot printing showed that the CPT Iα1b promoter was AT-rich and TATA-less, and mediated basal transcription through an initiator (INR)-independent mechanism. Bioinformatics analysis indicated that specificity protein 1 (Sp1) and nuclear factor Y (NF-Y) played potential important roles in driving basal expression of CPT Iα2a gene. In HepG2 and HEK293 cells, progressive deletion analysis indicated that several regions contained cis-elements controlling the transcription of the CPT Iα1b and CPT Iα2a genes. Moreover, some transcription factors, such as thyroid hormone receptor (TR), hepatocyte nuclear factor 4 (HNF4) and peroxisome proliferator-activated receptor (PPAR) family, were all identified on the CPT Iα1b and CPT Iα2a promoters. The TRα binding sites were only identified on CPT Iα1b promoter, while TRβ binding sites were only identified on CPT Iα2a promoter, suggesting that the transcription of CPT Iα1b and CPT Iα2a was regulated by a different mechanism. Site-mutation and electrophoretic mobility-shift assay (EMSA) revealed that fenofibrate-induced PPARα activation did not bind with predicted PPARα binding sites of CPT I promoters. Additionally, PPARα was not the only member of PPAR family regulating CPT I expression, and PPARγ also regulated the CPT I expression. All of these results provided new insights into the mechanisms for transcriptional regulation of CPT I genes in fish.
The multifocal papillary thyroid cancer (PTC), with more aggressive and poorer prognosis, is not rare in papillary histotype. Few studies evaluated risk factors and lymph node metastasis in multifocal PTC. The aim of this present study focusing on risk factors and lymph node metastasis characteristics in multifocal PTC was excepted to assist clinical decisions regarding surgery.It was a retrospective study. The 1249 consecutive patients with PTC were reviewed. Of these, 570 patients who met the criteria were selected: 285 with solitary papillary thyroid cancer and 285 with multifocal PTC. The risk factors and lymph node metastasis in multifocal PTC were investigated by univariate and multivariate analysis.Multifocal PTC showed a higher positive rate of capsular invasion, extrathyroidal extension, tumor size >10 mm, pathological T classification, N+ stage, local recurrence, and radioactive iodine ablation (RAI). Capsular invasion (hazard ratio [HR], 1.589; 95% confidence interval [CI],1.352–1.984), advanced pathological T classification (HR, 3.582; 95% CI, 2.184–5.870), and pathological N+ stage (HR, 1.872; 95% CI, 1.278–2.742) were related to increased risk of multifocality and there was a significant increased HR for central neck compartment involvement in male sex (HR, 2.694; 95% CI, 1.740–4.169), advanced pathological T classification (HR, 2.403; 95% CI, 1.479–3.907) and multifocality (HR, 1.988; 95% CI, 1.361–2.906).There is a significant association between capsular invasion, advanced pathological T classification, N+ stage, and multifocal PTC. Total thyroidectomy plus prophylactic bilateral central lymph node dissection should be recommended during surgery due to a stronger predilection for level VI lymph node metastasis in multifocal PTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.