Background Exosomes are nanoscale membrane vesicles secreted by both normal and cancer cells, and cancer cell-derived exosomes play an important role in the cross-talk between cancer cells and other cellular components in the tumor microenvironment. Mesenchymal stem cells (MSCs) have tropism for tumors and have been used as tumor-tropic vectors for tumor therapy; however, the safety of such therapeutic use of MSCs is unknown. In this study, we investigated the role of glioma cell-derived exosomes in the tumor-like phenotype transformation of human bone marrow mesenchymal stem cells (hBMSCs) and explored the underlying molecular mechanisms. Methods The effect of exosomes from U251 glioma cells on the growth of hBMSCs was evaluated with the CCK-8 assay, KI67 staining, and a cell cycle distribution assessment. The migration and invasion of hBMSCs were evaluated with a Transwell assay. A proteomics and bioinformatics approach, together with Western blotting and reverse transcriptase-polymerase chain reaction, was used to investigate the effect of U251 cell-derived exosomes on the proteome of hBMSCs. Results U251 cell-derived exosomes induced a tumor-like phenotype in hBMSCs by enhancing their proliferation, migration, and invasion and altering the production of proteins involved in the regulation of the cell cycle. Moreover, U251 cell-derived exosomes promoted the production of the metastasis-related proteins MMP-2 and MMP-9, glioma marker GFAP, and CSC markers (CD133 and Nestin). The ten differentially expressed proteins identified participated in several biological processes and exhibited various molecular functions, mainly related to the inactivation of glycolysis. Western blotting showed that U251 cell-derived exosomes upregulated the levels of Glut-1, HK-2, and PKM-2, leading to the induction of glucose consumption and generation of lactate and ATP. Treatment with 2-deoxy- d -glucose significantly reversed these effects of U251 cell-derived exosomes on hBMSCs. Conclusions Our data demonstrate that glioma cell-derived exosomes activate glycolysis in hBMSCs, resulting in their tumor-like phenotype transformation. This suggests that interfering with the interaction between exosomes and hBMSCs in the tumor microenvironment has potential as a therapeutic approach for glioma. Graphical abstract ᅟ
Cancer prognosis is poor for patients with blood-borne metastasis. Platelets are known to assist cancer cells in transmigrating through the endothelium, but ligands for the platelet-mediated cancer metastasis remain poorly defined. von Willebrand factor (vWF) is a major platelet ligand that has been widely used as a biomarker in cancer and associated inflammation. However, its functional role in cancer growth and metastasis is largely unknown. Here we report that gastric cancer cells from patients and cells from two well-established gastric cancer lines express vWF and secrete it into the circulation, upon which it rapidly becomes cell-bound to mediate cancer-cell aggregation and interaction with platelets and endothelial cells. The vWF-mediated homotypic and heterotypic cell–cell interactions promote the pulmonary graft of vWF-overexpressing gastric cancer BGC823 cells in a mouse model. The metastasis-promoting activity of vWF was blocked by antibodies against vWF and its platelet receptor GP Ibα. It was also reduced by an inhibitory siRNA that suppresses vWF expression. These findings demonstrate a causal role of cancer-cell-derived vWF in mediating gastric cancer metastasis and identify vWF as a new therapeutic target.
The stabilization of the resistive switching characteristics is important to resistive random access memory (RRAM) device development. In this paper, an alternative approach for improving resistive switching characteristics in ZrO(2)-based resistive memory devices has been investigated. Compared with the Cu/ZrO(2)/Pt structure device, by embedding a thin TiO(x) layer between the ZrO(2) and the Cu top electrode, the Cu/TiO(x)-ZrO(2)/Pt structure device exhibits much better resistive switching characteristics. The improvement of the resistive switching characteristics in the Cu/TiO(x)-ZrO(2)/Pt structure device might be attributed to the modulation of the barrier height at the electrode/oxide interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.