Discrete element software is used to simulate the excavation of a rock slope in Puli-Xuanwei Expressway in Yunnan Province. Through monitoring displacement development characteristics in different positions of slope, the result shows that the minimum horizontal displacement under excavation exists in the top of the slope, meanwhile the maximum horizontal displacement occurs in the foot and waist of the slope, and the maximum vertical displacement occurs in the top of the slope. Comparing rock slope in such conditions as different stratum angles, directions, rock characteristics and thickness, it concludes possible failure modes of slope and the variation law of safety coefficient under different conditions. This paper is instructive and offers reference for the practical engineering.
Discrete element software is used to simulate the excavation of a rock slope in Puli-Xuanwei Expressway in Yunnan Province. Through monitoring displacement development characteristics in different positions of slope, the result shows that the minimum horizontal displacement under excavation exists in the top of the slope, meanwhile the maximum horizontal displacement occurs in the foot and waist of the slope, and the maximum vertical displacement occurs in the top of the slope. Comparing rock slope in such conditions as different stratum angles, directions, rock characteristics and thickness, it concludes possible failure modes of slope and the variation law of safety coefficient under different conditions. This paper is instructive and offers reference for the practical engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.