We present an Arabidopsis thaliana full-length transcription factor resource of 92% of root stele–expressed transcription factors and 74.5% of root-expressed transcription factors. We demonstrate its use with enhanced yeast one-hybrid (eY1H ) screening for rapid, systematic mapping of plant transcription factor–promoter interactions. We identified 158 interactions with 13 stele-expressed promoters, many of which occur physically or are regulatory in planta.
Cotton (Gossypium hirsutum L.) fibers are single highly elongated cells derived from the outer epidermis of ovules. A large number of genes are required for fiber differentiation and development, but so far, little is known about how these genes control and regulate the process of fiber development. Here we examine the role of the cotton-fiber-specific R2R3 MYB gene GhMYB109 in cotton fiber development. Transgenic reporter gene analysis revealed that a 2-kb GhMYB109 promoter was sufficient to confirm its fiber-specific expression. Antisense-mediated suppression of GhMYB109 led to a substantial reduction in fiber length. Consistently, several genes related to cotton fiber growth were found to be significantly reduced in the transgenic cotton. Our results showed that GhMYB109 is required for cotton fiber development and reveal a largely conserved mechanism of the R2R3 MYB transcription factor in cell fate determination in plants.
Polycomb group (PcG) and trithorax group (trxG) proteins have been shown to act antagonistically to epigenetically regulate gene expression in eukaryotes. The trxG proteins counteract PcG-mediated floral repression in Arabidopsis, but their roles in other developmental processes are poorly understood. We investigated the interactions between the trxG genes, ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) and ULTRAPETALA1 (ULT1), and the PcG gene EMBRYONIC FLOWER 1 (EMF1) during early development. Unexpectedly, we found that mutations in the trxG genes failed to rescue the early-flowering phenotype of emf1 mutants. Instead, emf1 atx1 ult1 seedlings showed a novel swollen root phenotype and massive deregulation of gene expression. Greater ectopic expression of seed master regulatory genes in emf1 atx1 ult1 triple than in emf1 single mutants indicates that PcG and trxG factors together repress seed gene expression after germination. Furthermore, we found that the widespread gene derepression is associated with reduced levels of H3K27me3, an epigenetic repressive mark of gene expression, and with globally altered chromatin organization. EMF1, ATX1, and ULT1 are able to bind the chromatin of seed genes and ULT1 can physically interact with ATX1 and EMF1, suggesting that the trxG and EMF1 proteins directly associate at target gene loci for EMF1-mediated gene silencing. Thus, while ATX1, ULT1, and EMF1 interact antagonistically to regulate flowering, they work together to maintain chromatin integrity and prevent precocious seed gene expression after germination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.